Light-matter Coupling in Large-area Van Der Waals Superlattices
Overview
Authors
Affiliations
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. Here we present optical dispersion engineering in a superlattice structure comprising alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate greater than 90% narrow band absorption in less than 4 nm of active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in square-centimetre samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tuneable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically thin layers.
Kim S, Oh S, Kwak S, Noh G, Choi M, Lee J Sci Adv. 2025; 11(8):eads4573.
PMID: 39982993 PMC: 11844737. DOI: 10.1126/sciadv.ads4573.
Polariton-Mediated Ultrafast Nonlinear Energy Transfer in a van der Waals Superlattice.
Peng T, Lynch J, Yang J, Wang Y, Lee X, Conran B ACS Nano. 2025; 19(8):8152-8161.
PMID: 39981960 PMC: 11887482. DOI: 10.1021/acsnano.4c16649.
Long-Range Self-Hybridized Exciton-Polaritons in Two-Dimensional Ruddlesden-Popper Perovskites.
Black M, Asadi M, Darman P, Seckin S, Schillmoller F, Konig T ACS Photonics. 2024; 11(10):4065-4075.
PMID: 39429863 PMC: 11487709. DOI: 10.1021/acsphotonics.4c00824.
Room temperature polariton spin switches based on Van der Waals superlattices.
Zhao J, Fieramosca A, Bao R, Dini K, Su R, Sanvitto D Nat Commun. 2024; 15(1):7601.
PMID: 39217138 PMC: 11366025. DOI: 10.1038/s41467-024-51612-2.
Monolayer Semiconductor Superlattices with High Optical Absorption.
Elrafei S, Heijnen L, Godiksen R, Curto A ACS Photonics. 2024; 11(7):2587-2594.
PMID: 39036064 PMC: 11258785. DOI: 10.1021/acsphotonics.4c00277.