» Articles » PMID: 34853638

Radiomics in Hepatocellular Carcinoma: A State-of-the-art Review

Overview
Date 2021 Dec 2
PMID 34853638
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Hepatocellular carcinoma (HCC) is the most common cancer and the second major contributor to cancer-related mortality. Radiomics, a burgeoning technology that can provide invisible high-dimensional quantitative and mineable data derived from routine-acquired images, has enormous potential for HCC management from diagnosis to prognosis as well as providing contributions to the rapidly developing deep learning methodology. This article aims to review the radiomics approach and its current state-of-the-art clinical application scenario in HCC. The limitations, challenges, and thoughts on future directions are also summarized.

Citing Articles

Magnetic Resonance Imaging Liver Segmentation Protocol Enables More Consistent and Robust Annotations, Paving the Way for Advanced Computer-Assisted Analysis.

Jeltsch P, Monnin K, Jreige M, Fernandes-Mendes L, Girardet R, Dromain C Diagnostics (Basel). 2025; 14(24.

PMID: 39767146 PMC: 11726866. DOI: 10.3390/diagnostics14242785.


Construction of a 2.5D Deep Learning Model for Predicting Early Postoperative Recurrence of Hepatocellular Carcinoma Using Multi-View and Multi-Phase CT Images.

Zhang Y, Chen Z, Bu Y, Lei P, Yang W, Zhang W J Hepatocell Carcinoma. 2024; 11:2223-2239.

PMID: 39569409 PMC: 11577935. DOI: 10.2147/JHC.S493478.


A novel radiomics approach for predicting TACE outcomes in hepatocellular carcinoma patients using deep learning for multi-organ segmentation.

Bartnik K, Krzyzinski M, Bartczak T, Korzeniowski K, Lamparski K, Wroblewski T Sci Rep. 2024; 14(1):14779.

PMID: 38926517 PMC: 11208561. DOI: 10.1038/s41598-024-65630-z.


Comparing Texture Analysis of Apparent Diffusion Coefficient MRI in Hepatocellular Adenoma and Hepatocellular Carcinoma.

Abdullah A, Amanpour-Gharaei B, Toosi M, Delazar S, Saligheh Rad H, Arian A Cureus. 2024; 16(1):e51443.

PMID: 38298321 PMC: 10829059. DOI: 10.7759/cureus.51443.


From imaging to clinical outcome: dual-region CT radiomics predicting FOXM1 expression and prognosis in hepatocellular carcinoma.

Chen X, Tang Y, Wu D, Li R, Lin Z, Zhou X Front Oncol. 2023; 13:1278467.

PMID: 37817774 PMC: 10561750. DOI: 10.3389/fonc.2023.1278467.


References
1.
Gillies R, Kinahan P, Hricak H . Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2015; 278(2):563-77. PMC: 4734157. DOI: 10.1148/radiol.2015151169. View

2.
Bodalal Z, Trebeschi S, Nguyen-Kim T, Schats W, Beets-Tan R . Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY). 2019; 44(6):1960-1984. DOI: 10.1007/s00261-019-02028-w. View

3.
Hamm C, Wang C, Savic L, Ferrante M, Schobert I, Schlachter T . Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol. 2019; 29(7):3338-3347. PMC: 7251621. DOI: 10.1007/s00330-019-06205-9. View

4.
Scalco E, Belfatto A, Mastropietro A, Rancati T, Avuzzi B, Messina A . T2w-MRI signal normalization affects radiomics features reproducibility. Med Phys. 2020; 47(4):1680-1691. DOI: 10.1002/mp.14038. View

5.
Parmar C, Grossmann P, Bussink J, Lambin P, Aerts H . Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015; 5:13087. PMC: 4538374. DOI: 10.1038/srep13087. View