BUB1 Drives the Occurrence and Development of Bladder Cancer by Mediating the STAT3 Signaling Pathway
Overview
Authors
Affiliations
Background: The incidence of bladder urothelial carcinoma (UC), a common malignancy of the urinary tract, is approximately three times higher in men than in women. High expression of the mitotic kinase BUB1 is associated with the occurrence and development of several cancers, although the relationship between BUB1 and bladder tumorigenesis remains unclear.
Methods: Using a microarray approach, we found increased BUB1 expression in human BCa. The association between BUB1 and STAT3 phosphorylation was determined through molecular and cell biological methods. We evaluated the impact of pharmacologic inhibition of BUB1 kinase activity on proliferation and BCa progression in vitro and in vivo.
Results: In this study, we found that BUB1 expression was increased in human bladder cancer (BCa). We further identified through a series of molecular and cell biological approaches that BUB1 interacted directly with STAT3 and mediated the phosphorylation of STAT3 at Ser727. In addition, the findings that pharmacologic inhibition of BUB1 kinase activity significantly suppressed BCa cell proliferation and the progression of bladder cancer in vitro and in vivo were further verified. Finally, we found that the BUB1/STAT3 complex promoted the transcription of STAT3 target genes and that depletion of BUB1 and mutation of the BUB1 kinase domain abrogated this transcriptional activity, further highlighting the critical role of kinase activity in the activation of STAT3 target genes. A pharmacological inhibitor of BUB1 (2OH-BNPP1) was able to significantly inhibit the growth of BCa cell xenografts.
Conclusion: This study showed that the BUB1 kinase drives the progression and proliferation of BCa by regulating the transcriptional activation of STAT3 signaling and may be an attractive candidate for therapeutic targeting in BCa.
Li Y, Zhang L, Xu G, Chen J, Zhao K, Li M Front Immunol. 2025; 15:1493528.
PMID: 39749345 PMC: 11693660. DOI: 10.3389/fimmu.2024.1493528.
Luo J, Wang S, Fu J, Xu P, Shao N, Lu J NAR Cancer. 2024; 6(4):zcae043.
PMID: 39554489 PMC: 11567160. DOI: 10.1093/narcan/zcae043.
DTL promotes the growth and migration of melanoma cells through the ERK/E2F1/BUB1 axis.
Xuan X, Cao J, Chen L, Zhang J, Qian Y, Huang C Sci Rep. 2024; 14(1):26288.
PMID: 39487277 PMC: 11530538. DOI: 10.1038/s41598-024-76477-9.
BUB1 Inhibition Overcomes Radio- and Chemoradiation Resistance in Lung Cancer.
Thoidingjam S, Sriramulu S, Hassan O, Brown S, Siddiqui F, Movsas B Cancers (Basel). 2024; 16(19).
PMID: 39409911 PMC: 11475950. DOI: 10.3390/cancers16193291.
BUB1 induces AKT/mTOR pathway activity to promote EMT induction in human small cell lung cancer.
Wang M, You L, Su Z, He Y, Li D, Liu Z Sci Rep. 2024; 14(1):20654.
PMID: 39232038 PMC: 11375037. DOI: 10.1038/s41598-024-71644-4.