» Articles » PMID: 34851670

Dynamic Interphase-mediated Assembly for Deep Cycling Metal Batteries

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Dec 1
PMID 34851670
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Secondary batteries based on earth-abundant, multivalent metals provide a promising path for high energy density and potentially low-cost electricity storage. Poor anodic reversibility caused by disordered metal crystallization during battery charging remains a fundamental, century-old challenge for the practical use of deep cycling metal batteries. We report that dynamic interphases formed by anisotropic nanostructures dispersed in a battery electrolyte provide a general method for achieving ordered assembly of metal electrodeposits and high anode reversibility. Interphases formed by anisotropic graphitic carbon nitride nanostructures in colloidal electrolytes are shown to promote formation of vertically aligned and spatially compact (~100% compactness) zinc electrodeposits with unprecedented, high levels of reversibility (>99.8%), even at quite high areal capacity (6 to 20 milliampere hour per square centimeter). It is also reported that the same concept enables uniform growth of compact magnesium and aluminum electrodeposits, defining a general pathway toward energy-dense metal batteries based on earth-abundant anode chemistries.

Citing Articles

Ordered planar plating/stripping enables deep cycling zinc metal batteries.

Chen S, Xia Y, Zeng R, Luo Z, Wu X, Hu X Sci Adv. 2024; 10(10):eadn2265.

PMID: 38446894 PMC: 10917354. DOI: 10.1126/sciadv.adn2265.


Suppressing metal corrosion through identification of optimal crystallographic plane for Zn batteries.

Ren L, Hu Z, Peng C, Zhang L, Wang N, Wang F Proc Natl Acad Sci U S A. 2024; 121(5):e2309981121.

PMID: 38252819 PMC: 10835070. DOI: 10.1073/pnas.2309981121.


Hydrolysis of Solid Buffer Enables High-Performance Aqueous Zinc Ion Battery.

Cheng H, Zhang S, Guo W, Wu Q, Shen Z, Wang L Adv Sci (Weinh). 2023; 11(7):e2307052.

PMID: 38063837 PMC: 10870042. DOI: 10.1002/advs.202307052.


Rechargeable Aqueous Zinc-Halogen Batteries: Fundamental Mechanisms, Research Issues, and Future Perspectives.

She L, Cheng H, Yuan Z, Shen Z, Wu Q, Zhong W Adv Sci (Weinh). 2023; 11(8):e2305061.

PMID: 37939285 PMC: 10953720. DOI: 10.1002/advs.202305061.


Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries.

Zhao Y, Guo S, Chen M, Lu B, Zhang X, Liang S Nat Commun. 2023; 14(1):7080.

PMID: 37925505 PMC: 10625522. DOI: 10.1038/s41467-023-42919-7.


References
1.
Cheng X, Zhang R, Zhao C, Zhang Q . Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem Rev. 2017; 117(15):10403-10473. DOI: 10.1021/acs.chemrev.7b00115. View

2.
Zhang N, Huang S, Yuan Z, Zhu J, Zhao Z, Niu Z . Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl. 2020; 60(6):2861-2865. DOI: 10.1002/anie.202012322. View

3.
Zhang W, Zhuang H, Fan L, Gao L, Lu Y . A "cation-anion regulation" synergistic anode host for dendrite-free lithium metal batteries. Sci Adv. 2018; 4(2):eaar4410. PMC: 5834003. DOI: 10.1126/sciadv.aar4410. View

4.
Liu X, Yang F, Xu W, Zeng Y, He J, Lu X . Zeolitic Imidazolate Frameworks as Zn Modulation Layers to Enable Dendrite-Free Zn Anodes. Adv Sci (Weinh). 2020; 7(21):2002173. PMC: 7610278. DOI: 10.1002/advs.202002173. View

5.
Zhi J, Li S, Han M, Chen P . Biomolecule-guided cation regulation for dendrite-free metal anodes. Sci Adv. 2020; 6(32):eabb1342. PMC: 7413738. DOI: 10.1126/sciadv.abb1342. View