» Articles » PMID: 34835455

Microfluidics As a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery

Overview
Journal Microorganisms
Specialty Microbiology
Date 2021 Nov 27
PMID 34835455
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen , which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.

Citing Articles

Recent advances in electrochemiluminescence sensing for in vitro cell analysis: a review.

Ino K, Mockaitis T, Shikuwa R, Oba K, Hiramoto K, Morkvenaite-Vilkonciene I Anal Sci. 2025; .

PMID: 39918697 DOI: 10.1007/s44211-025-00723-x.


Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review).

Zhu J, Wang H, Chen L Int J Mol Med. 2024; 55(3.

PMID: 39717951 PMC: 11722055. DOI: 10.3892/ijmm.2024.5477.


Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis.

Sarathy J PLoS Pathog. 2024; 20(10):e1012595.

PMID: 39383167 PMC: 11463790. DOI: 10.1371/journal.ppat.1012595.


Special Issue: "New Methods in Microbial Research 2.0": Editorial.

Gonzalez J Microorganisms. 2023; 11(3).

PMID: 36985291 PMC: 10057640. DOI: 10.3390/microorganisms11030718.


The evolving biology of drug resistance.

Jones R, Adams K, Eldesouky H, Sherman D Front Cell Infect Microbiol. 2022; 12:1027394.

PMID: 36275024 PMC: 9579286. DOI: 10.3389/fcimb.2022.1027394.


References
1.
Singh A, Gupta U . Animal models of tuberculosis: Lesson learnt. Indian J Med Res. 2018; 147(5):456-463. PMC: 6094516. DOI: 10.4103/ijmr.IJMR_554_18. View

2.
Xia Y, Whitesides G . Soft Lithography. Angew Chem Int Ed Engl. 2018; 37(5):550-575. DOI: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G. View

3.
Feretzakis G, Loupelis E, Sakagianni A, Kalles D, Lada M, Christopoulos C . Using Machine Learning Algorithms to Predict Antimicrobial Resistance and Assist Empirical Treatment. Stud Health Technol Inform. 2020; 272:75-78. DOI: 10.3233/SHTI200497. View

4.
Muhlig A, Bocklitz T, Labugger I, Dees S, Henk S, Richter E . LOC-SERS: A Promising Closed System for the Identification of Mycobacteria. Anal Chem. 2016; 88(16):7998-8004. DOI: 10.1021/acs.analchem.6b01152. View

5.
Aldridge B, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M . Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science. 2011; 335(6064):100-4. PMC: 3397429. DOI: 10.1126/science.1216166. View