» Articles » PMID: 34832610

In Silico Survey and Characterization of Functional and Non-Functional Proteases

Overview
Journal Pathogens
Date 2021 Nov 27
PMID 34832610
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Human babesiosis caused by the intraerythrocytic apicomplexan is an expanding tick-borne zoonotic disease that may cause severe symptoms and death in elderly or immunocompromised individuals. In light of an increasing resistance of to drugs, there is a lack of therapeutic alternatives. Species-specific proteases are essential for parasite survival and possible chemotherapeutic targets. However, the repertoire of proteases in remains poorly investigated. Herein, we employed several combined bioinformatics tools and strategies to organize and identify genes encoding for the full repertoire of proteases in the genome. We identified 64 active proteases and 25 nonactive protease homologs. These proteases can be classified into cysteine ( = 28), serine ( = 21), threonine ( = 14), asparagine ( = 7), and metallopeptidases ( = 19), which, in turn, are assigned to a total of 38 peptidase families. Comparative studies between the repertoire of and proteases revealed differences among sensu stricto and sensu lato parasites that reflect their distinct evolutionary history. Overall, this data may help direct future research towards our understanding of the biology and pathogenicity of parasites and to explore proteases as targets for developing novel therapeutic interventions.

Citing Articles

Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis.

Aderanti T, Marshall J, Thekkiniath J J Eukaryot Microbiol. 2024; 72(2):e13064.

PMID: 39556081 PMC: 11780687. DOI: 10.1111/jeu.13064.


Evaluating Antimalarial Proteasome Inhibitors for Efficacy in Blood Stage Cultures.

Robbertse L, Fajtova P, Snebergerova P, Jalovecka M, Levytska V, Barbosa da Silva E ACS Omega. 2024; 9(45):44989-44999.

PMID: 39554424 PMC: 11561622. DOI: 10.1021/acsomega.4c04564.


The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome.

Wiser M Pathogens. 2024; 13(3).

PMID: 38535526 PMC: 10974218. DOI: 10.3390/pathogens13030182.


Comparative Degradome Analysis of the Bovine Piroplasmid Pathogens and .

Poklepovich T, Mesplet M, Gallenti R, Florin-Christensen M, Schnittger L Pathogens. 2023; 12(2).

PMID: 36839509 PMC: 9965338. DOI: 10.3390/pathogens12020237.


Babesia, Theileria, Plasmodium and Hemoglobin.

Sojka D, Jalovecka M, Perner J Microorganisms. 2022; 10(8).

PMID: 36014069 PMC: 9414693. DOI: 10.3390/microorganisms10081651.


References
1.
Fernandez-Montero J, Barreiro P, Soriano V . HIV protease inhibitors: recent clinical trials and recommendations on use. Expert Opin Pharmacother. 2009; 10(10):1615-29. DOI: 10.1517/14656560902980202. View

2.
Nasamu A, Polino A, Istvan E, Goldberg D . Malaria parasite plasmepsins: More than just plain old degradative pepsins. J Biol Chem. 2020; 295(25):8425-8441. PMC: 7307202. DOI: 10.1074/jbc.REV120.009309. View

3.
Gandhi S, Baker R, Cho S, Stanchev S, Strisovsky K, Urban S . Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria. Cell Chem Biol. 2020; 27(11):1410-1424.e6. PMC: 7680425. DOI: 10.1016/j.chembiol.2020.08.011. View

4.
Ueti M, Johnson W, Kappmeyer L, Herndon D, Mousel M, Reif K . Transcriptome dataset of life stages within vertebrate and invertebrate hosts. Data Brief. 2020; 33:106533. PMC: 7701181. DOI: 10.1016/j.dib.2020.106533. View

5.
Liu M, Ji S, Rizk M, Adjou Moumouni P, Galon E, Li J . Transient Transfection of the Zoonotic Parasite . Pathogens. 2020; 9(2). PMC: 7169379. DOI: 10.3390/pathogens9020108. View