» Articles » PMID: 34831252

Acetylation in Mitochondria Dynamics and Neurodegeneration

Overview
Journal Cells
Publisher MDPI
Date 2021 Nov 27
PMID 34831252
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondria are a unique intracellular organelle due to their evolutionary origin and multifunctional role in overall cellular physiology and pathophysiology. To meet the specific spatial metabolic demands within the cell, mitochondria are actively moving, dividing, or fusing. This process of mitochondrial dynamics is fine-tuned by a specific group of proteins and their complex post-translational modifications. In this review, we discuss the mitochondrial dynamics regulatory enzymes, their adaptor proteins, and the effect of acetylation on the activity of fusion and fission machinery as a ubiquitous response to metabolic stresses. Further, we discuss the role of intracellular cytoskeleton structures and their post-translational modifications in the modulation of mitochondrial fusion and fission. Finally, we review the role of mitochondrial dynamics dysregulation in the pathophysiology of acute brain injury and the treatment strategies based on modulation of NAD-dependent deacetylation.

Citing Articles

Sexual Dimorphism of Ethanol-Induced Mitochondrial Dynamics in Purkinje Cells.

Khatoon R, Fick J, Elesinnla A, Waddell J, Kristian T Int J Mol Sci. 2025; 25(24).

PMID: 39769476 PMC: 11678447. DOI: 10.3390/ijms252413714.


Unraveling the Epigenetic Landscape: Insights into Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis.

Di Martino P, Marcozzi V, Bibbo S, Ghinassi B, Di Baldassarre A, Gaggi G Brain Sci. 2024; 14(6).

PMID: 38928553 PMC: 11202179. DOI: 10.3390/brainsci14060553.


Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration.

Zafar S, Fatima S, Schmitz M, Zerr I Biomolecules. 2024; 14(1).

PMID: 38254718 PMC: 10813409. DOI: 10.3390/biom14010118.


Brain energy metabolism: A roadmap for future research.

Rae C, Baur J, Borges K, Dienel G, Diaz-Garcia C, Douglass S J Neurochem. 2024; 168(5):910-954.

PMID: 38183680 PMC: 11102343. DOI: 10.1111/jnc.16032.


Mitochondrial impairment, decreased sirtuin activity and protein acetylation in dorsal root ganglia in Friedreich Ataxia models.

Sanz-Alcazar A, Britti E, Delaspre F, Medina-Carbonero M, Pazos-Gil M, Tamarit J Cell Mol Life Sci. 2023; 81(1):12.

PMID: 38129330 PMC: 10739563. DOI: 10.1007/s00018-023-05064-4.


References
1.
Hammond J, Huang C, Kaech S, Jacobson C, Banker G, Verhey K . Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol Biol Cell. 2009; 21(4):572-83. PMC: 2820422. DOI: 10.1091/mbc.e09-01-0044. View

2.
Nahhas F, Dryden S, Abrams J, Tainsky M . Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin. Mol Cell Biochem. 2007; 303(1-2):221-30. DOI: 10.1007/s11010-007-9478-6. View

3.
Martin W, Hoffmeister M, Rotte C, Henze K . An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem. 2002; 382(11):1521-39. DOI: 10.1515/BC.2001.187. View

4.
Perdiz D, Mackeh R, Pous C, Baillet A . The ins and outs of tubulin acetylation: more than just a post-translational modification?. Cell Signal. 2010; 23(5):763-71. DOI: 10.1016/j.cellsig.2010.10.014. View

5.
Shida T, Cueva J, Xu Z, Goodman M, Nachury M . The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci U S A. 2010; 107(50):21517-22. PMC: 3003046. DOI: 10.1073/pnas.1013728107. View