» Articles » PMID: 34829310

Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges

Overview
Specialty Radiology
Date 2021 Nov 27
PMID 34829310
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive, non-systematic and clinically-oriented overview of 74 DL-based segmentation studies, published between January 2016 and December 2020, for bladder, prostate, cervical and rectal cancers on computed tomography (CT) and magnetic resonance imaging (MRI), highlighting the key findings, challenges and limitations.

Citing Articles

Sex-Based Bias in Artificial Intelligence-Based Segmentation Models in Clinical Oncology.

Doo F, Naranjo W, Kapouranis T, Thor M, Chao M, Yang X Clin Oncol (R Coll Radiol). 2025; 39:103758.

PMID: 39874747 PMC: 11850178. DOI: 10.1016/j.clon.2025.103758.


Toward Robust Lung Cancer Diagnosis: Integrating Multiple CT Datasets, Curriculum Learning, and Explainable AI.

Bouamrane A, Derdour M, Bennour A, Elfadil Eisa T, M Emara A, Al-Sarem M Diagnostics (Basel). 2025; 15(1.

PMID: 39795530 PMC: 11720071. DOI: 10.3390/diagnostics15010001.


Safety and efficiency of a fully automatic workflow for auto-segmentation in radiotherapy using three commercially available deep learning-based applications.

Cavus H, Bulens P, Tournel K, Orlandini M, Jankelevitch A, Crijns W Phys Imaging Radiat Oncol. 2024; 31:100627.

PMID: 39253729 PMC: 11381787. DOI: 10.1016/j.phro.2024.100627.


Artificial Intelligence-Based Organ Delineation for Radiation Treatment Planning of Prostate Cancer on Computed Tomography.

Polymeri E, Johnsson A, Enqvist O, Ulen J, Pettersson N, Nordstrom F Adv Radiat Oncol. 2024; 9(3):101383.

PMID: 38495038 PMC: 10943520. DOI: 10.1016/j.adro.2023.101383.


Multicenter Study of Pelvic Nodal Autosegmentation Algorithm of Siemens Healthineers: Comparison of Male Versus Female Pelvis.

Rayn K, Gokhroo G, Jeffers B, Gupta V, Chaudhari S, Clark R Adv Radiat Oncol. 2024; 9(2):101326.

PMID: 38405314 PMC: 10885554. DOI: 10.1016/j.adro.2023.101326.


References
1.
OConnor J, Aboagye E, Adams J, Aerts H, Barrington S, Beer A . Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2016; 14(3):169-186. PMC: 5378302. DOI: 10.1038/nrclinonc.2016.162. View

2.
Song Y, Hu J, Wu Q, Xu F, Nie S, Zhao Y . Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy. Radiother Oncol. 2020; 145:186-192. DOI: 10.1016/j.radonc.2020.01.020. View

3.
Ghavami N, Hu Y, Gibson E, Bonmati E, Emberton M, Moore C . Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration. Med Image Anal. 2019; 58:101558. PMC: 7985677. DOI: 10.1016/j.media.2019.101558. View

4.
Lin Y, Lin G, Hong J, Lin Y, Chen F, Ng S . Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology. J Magn Reson Imaging. 2017; 46(2):483-489. DOI: 10.1002/jmri.25583. View

5.
Nikolov S, Blackwell S, Zverovitch A, Mendes R, Livne M, De Fauw J . Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study. J Med Internet Res. 2021; 23(7):e26151. PMC: 8314151. DOI: 10.2196/26151. View