6.
Hernandez-Hernandez T, Martinez-Castilla L, Alvarez-Buylla E
. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol. 2006; 24(2):465-81.
DOI: 10.1093/molbev/msl182.
View
7.
Chen H, Zeng X, Yang J, Cai X, Shi Y, Zheng R
. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution. Hortic Res. 2021; 8(1):98.
PMC: 8087690.
DOI: 10.1038/s41438-021-00531-0.
View
8.
Cai X, Mai R, Zou J, Zhang H, Zeng X, Zheng R
. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS. J Zhejiang Univ Sci B. 2014; 15(7):638-48.
PMC: 4097373.
DOI: 10.1631/jzus.B1400058.
View
9.
Urbanus S, de Folter S, Shchennikova A, Kaufmann K, Immink R, Angenent G
. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol. 2009; 9:5.
PMC: 2630930.
DOI: 10.1186/1471-2229-9-5.
View
10.
Coen E, Meyerowitz E
. The war of the whorls: genetic interactions controlling flower development. Nature. 1991; 353(6339):31-7.
DOI: 10.1038/353031a0.
View
11.
Lee H, Irish V
. Gene duplication and loss in a MADS box gene transcription factor circuit. Mol Biol Evol. 2011; 28(12):3367-80.
DOI: 10.1093/molbev/msr169.
View
12.
Kanno A, Saeki H, Kameya T, Saedler H, Theissen G
. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol. 2003; 52(4):831-41.
DOI: 10.1023/a:1025070827979.
View
13.
Louati M, Salazar-Sarasua B, Roque E, Beltran J, Salhi Hannachi A, Gomez-Mena C
. Isolation and Functional Analysis of a -like MADS-Box Gene from Argan Tree (). Plants (Basel). 2021; 10(8).
PMC: 8399449.
DOI: 10.3390/plants10081665.
View
14.
Zhang S, Zhang J, Zhao J, He C
. Distinct subfunctionalization and neofunctionalization of the B-class MADS-box genes in Physalis floridana. Planta. 2014; 241(2):387-402.
DOI: 10.1007/s00425-014-2190-3.
View
15.
Yang X, Yue Y, Li H, Ding W, Chen G, Shi T
. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of . Hortic Res. 2018; 5:72.
PMC: 6246602.
DOI: 10.1038/s41438-018-0108-0.
View
16.
Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig W
. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 1992; 11(13):4693-704.
PMC: 556944.
DOI: 10.1002/j.1460-2075.1992.tb05574.x.
View
17.
Tsai W, Lee P, Chen H, Hsiao Y, Wei W, Pan Z
. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 2005; 46(7):1125-39.
DOI: 10.1093/pcp/pci125.
View
18.
Soltis D, Chanderbali A, Kim S, Buzgo M, Soltis P
. The ABC model and its applicability to basal angiosperms. Ann Bot. 2007; 100(2):155-63.
PMC: 2735328.
DOI: 10.1093/aob/mcm117.
View
19.
Xiang L, Chen Y, Chen L, Fu X, Zhao K, Zhang J
. B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.f. Physiol Plant. 2017; 162(3):353-369.
DOI: 10.1111/ppl.12647.
View
20.
Park J, Ishikawa Y, Ochiai T, Kanno A, Kameya T
. Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol. 2004; 45(3):325-32.
DOI: 10.1093/pcp/pch040.
View