» Articles » PMID: 34814832

Molecular Evolution of Chloroplast Genomes in Subfamily Zingiberoideae (Zingiberaceae)

Overview
Journal BMC Plant Biol
Publisher Biomed Central
Specialty Biology
Date 2021 Nov 24
PMID 34814832
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Zingiberoideae is a large and diverse subfamily of the family Zingiberaceae. Four genera in subfamily Zingiberoideae each possess 50 or more species, including Globba (100), Hedychium (> 80), Kaempferia (50) and Zingiber (150). Despite the agricultural, medicinal and horticultural importance of these species, genomic resources and suitable molecular markers for them are currently sparse.

Results: Here, we have sequenced, assembled and analyzed ten complete chloroplast genomes from nine species of subfamily Zingiberoideae: Globba lancangensis, Globba marantina, Globba multiflora, Globba schomburgkii, Globba schomburgkii var. angustata, Hedychium coccineum, Hedychium neocarneum, Kaempferia rotunda 'Red Leaf', Kaempferia rotunda 'Silver Diamonds' and Zingiber recurvatum. These ten chloroplast genomes (size range 162,630-163,968 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 87,172-88,632 bp), a small single copy (SSC, 15,393-15,917 bp) and a pair of inverted repeats (IRs, 29,673-29,833 bp). The genomes contain 111-113 different genes, including 79 protein coding genes, 28-30 tRNAs and 4 rRNA genes. The dynamics of the genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats exhibit similarities, with slight differences observed among the ten genomes. Further comparative analysis of seventeen related Zingiberoideae species, 12 divergent hotspots are identified. Positive selection is observed in 14 protein coding genes, including accD, ccsA, ndhA, ndhB, psbJ, rbcL, rpl20, rpoC1, rpoC2, rps12, rps18, ycf1, ycf2 and ycf4. Phylogenetic analyses, based on the complete chloroplast-derived single-nucleotide polymorphism data, strongly support that Globba, Hedychium, and Curcuma I + "the Kaempferia clade" consisting of Curcuma II, Kaempferia and Zingiber, form a nested evolutionary relationship in subfamily Zingiberoideae.

Conclusions: Our study provides detailed information on ten complete Zingiberoideae chloroplast genomes, representing a valuable resource for future studies that seek to understand the molecular evolutionary dynamics in family Zingiberaceae. The identified divergent hotspots can be used for development of molecular markers for phylogenetic inference and species identification among closely related species within four genera of Globba, Hedychium, Kaempferia and Zingiber in subfamily Zingiberoideae.

Citing Articles

Complete chloroplast genome data reveal the existence of the L. complex and its potential introduction pathways into China.

Tao Y, Chen L, Jiang M, Jin J, Sun Z, Cai C Front Plant Sci. 2025; 15:1498543.

PMID: 39759232 PMC: 11695338. DOI: 10.3389/fpls.2024.1498543.


Comparative chloroplast genomics of Caryophyllaceae species: insights into sequence variations and phylogenetic evolution.

Yang L, Zhu Y, Hua Q BMC Plant Biol. 2024; 24(1):1259.

PMID: 39725910 PMC: 11674409. DOI: 10.1186/s12870-024-05921-9.


Phylogenomics and plastome evolution of Lithospermeae (Boraginaceae).

Noroozi M, Ghahremaninejad F, Riahi M, Cohen J BMC Plant Biol. 2024; 24(1):957.

PMID: 39396939 PMC: 11475214. DOI: 10.1186/s12870-024-05665-6.


The complete chloroplast genome of var. (Buxaceae) and its phylogenetic analysis.

Yin Y, Xiao T, Zhang Y Mitochondrial DNA B Resour. 2024; 9(10):1322-1326.

PMID: 39359376 PMC: 11445884. DOI: 10.1080/23802359.2024.2410441.


Comparative analysis of the complete chloroplast genomes of thirteen Bougainvillea cultivars from South China with implications for their genome structures and phylogenetic relationships.

Wu X, Wang H, Zou S, Wang L, Zhu G, Li D PLoS One. 2024; 19(9):e0310091.

PMID: 39259741 PMC: 11389920. DOI: 10.1371/journal.pone.0310091.


References
1.
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio J, Guirao-Rico S, Librado P, Ramos-Onsins S . DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol Biol Evol. 2017; 34(12):3299-3302. DOI: 10.1093/molbev/msx248. View

2.
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J . SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2013; 1(1):18. PMC: 3626529. DOI: 10.1186/2047-217X-1-18. View

3.
Daniell H, Lin C, Yu M, Chang W . Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 2016; 17(1):134. PMC: 4918201. DOI: 10.1186/s13059-016-1004-2. View

4.
Hong Z, Wu Z, Zhao K, Yang Z, Zhang N, Guo J . Comparative Analyses of Five Complete Chloroplast Genomes from the Genus (Fabacaeae). Int J Mol Sci. 2020; 21(11). PMC: 7312355. DOI: 10.3390/ijms21113758. View

5.
Kent W . BLAT--the BLAST-like alignment tool. Genome Res. 2002; 12(4):656-64. PMC: 187518. DOI: 10.1101/gr.229202. View