» Articles » PMID: 34803606

Molecular Strategies for Intensity-Dependent Olfactory Processing in

Overview
Specialty Molecular Biology
Date 2021 Nov 22
PMID 34803606
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclase (GC)- cGMP signaling pathway in olfactory neuron amphid wing "C" cell (AWC), while two opposite cGMP signaling pathways are responsible for odor-sensing in olfactory neuron amphid wing "B" cell (AWB): (1) a depolarizing Gα (GPA-3)- phosphodiesterase (PDE) - cGMP pathway which can be activated by low concentrations of isoamyl alcohol (IAA), and (2) a hyperpolarizing Gα (ODR-3)- GC- cGMP pathway sensing high concentrations of IAA. Besides, IAA induces Gα (ODR-3)-TRPV(OSM-9)-dependent currents in amphid wing "A" cell (AWA) and amphid neuron "H" cell with single ciliated sensory ending (ASH) neurons with different thresholds. Our results demonstrate that an elaborate combination of multiple signaling machineries encode the intensity of olfactory input, shedding light on understanding the molecular strategies on sensory transduction.

Citing Articles

A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans.

Fryer E, Guha S, Rogel-Hernandez L, Logan-Garbisch T, Farah H, Rezaei E PLoS Biol. 2024; 22(6):e3002672.

PMID: 38935621 PMC: 11210793. DOI: 10.1371/journal.pbio.3002672.


An efficient behavioral screening platform classifies natural products and other chemical cues according to their chemosensory valence in .

Fryer E, Guha S, Rogel-Hernandez L, Logan-Garbisch T, Farah H, Rezaei E bioRxiv. 2023; .

PMID: 37333363 PMC: 10274637. DOI: 10.1101/2023.06.02.542933.


Glial regulators of ions and solutes required for specific chemosensory functions in .

Wang L, Graziano B, Encalada N, Fernandez-Abascal J, Kaplan D, Bianchi L iScience. 2022; 25(12):105684.

PMID: 36567707 PMC: 9772852. DOI: 10.1016/j.isci.2022.105684.


The Voltage-Gated Calcium Channel EGL-19 Acts on Glia to Drive Olfactory Adaptation.

Chen D, Cheng H, Liu S, Al-Sheikh U, Fan Y, Duan D Front Mol Neurosci. 2022; 15:907064.

PMID: 35782381 PMC: 9247319. DOI: 10.3389/fnmol.2022.907064.


Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type.

Khan M, Hartmann A, ODonnell M, Piccione M, Pandey A, Chao P PLoS Biol. 2022; 20(6):e3001677.

PMID: 35696430 PMC: 9232122. DOI: 10.1371/journal.pbio.3001677.

References
1.
Xiong W, Solessio E, Yau K . An unusual cGMP pathway underlying depolarizing light response of the vertebrate parietal-eye photoreceptor. Nat Neurosci. 1999; 1(5):359-65. DOI: 10.1038/nn0998_359. View

2.
Gottfried J . Function follows form: ecological constraints on odor codes and olfactory percepts. Curr Opin Neurobiol. 2009; 19(4):422-9. PMC: 2761641. DOI: 10.1016/j.conb.2009.07.012. View

3.
Jansen G, Thijssen K, Werner P, van der Horst M, Hazendonk E, Plasterk R . The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet. 1999; 21(4):414-9. DOI: 10.1038/7753. View

4.
Komatsu H, Mori I, Rhee J, Akaike N, Ohshima Y . Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron. 1996; 17(4):707-18. DOI: 10.1016/s0896-6273(00)80202-0. View

5.
Harris G, Shen Y, Ha H, Donato A, Wallis S, Zhang X . Dissecting the signaling mechanisms underlying recognition and preference of food odors. J Neurosci. 2014; 34(28):9389-403. PMC: 4087214. DOI: 10.1523/JNEUROSCI.0012-14.2014. View