» Articles » PMID: 34803553

Lab-on-a-chip Technologies for Food Safety, Processing, and Packaging Applications: a Review

Overview
Specialty Chemistry
Date 2021 Nov 22
PMID 34803553
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The advent of microfluidic systems has led to significant developments in lab-on-a-chip devices integrating several functions onto a single platform. Over the years, these miniature devices have become a promising tool for faster analytical testing, displaying high precision and efficiency. Nonetheless, most microfluidic systems are not commercially available. Research is actually undergoing on the application of these devices in environmental, food, biomedical, and healthcare industries. The lab-on-a-chip industry is predicted to grow annually by 20%. Here, we review the use of lab-on-a-chip devices in the food sector. We present fabrication technologies and materials to developing lab-on-a-chip devices. We compare electrochemical, optical, colorimetric, chemiluminescence and biological methods for the detection of pathogens and microorganisms. We emphasize emulsion processing, food formulation, nutraceutical development due to their promising characteristics. Last, smart packaging technologies like radio frequency identification and indicators are highlighted because they allow better product identification and traceability.

Citing Articles

Lab-on-a-Chip Devices for Nucleic Acid Analysis in Food Safety.

Lee I, Kim H Micromachines (Basel). 2025; 15(12.

PMID: 39770277 PMC: 11677256. DOI: 10.3390/mi15121524.


Proposal of a Rapid Detection System Using Image Analysis for ELISA with an Autonomous Centrifugal Microfluidic System.

Okamoto S, Mori Y, Nakamura S, Kanai Y, Ukita Y, Nagai M Micromachines (Basel). 2024; 15(11).

PMID: 39597199 PMC: 11596746. DOI: 10.3390/mi15111387.


Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview.

Alexandre-Franco M, Kouider R, Kassir Al-Karany R, Cuerda-Correa E, Al-Kassir A Micromachines (Basel). 2024; 15(9).

PMID: 39337797 PMC: 11433824. DOI: 10.3390/mi15091137.


Trends of Nanobiosensors in Modern Agriculture Systems.

Kumar P, Chugh P, Ali S, Chawla W, Sushmita S, Kumar R Appl Biochem Biotechnol. 2024; 197(1):667-690.

PMID: 39136915 DOI: 10.1007/s12010-024-05039-6.


Quantitative, high-sensitivity measurement of liquid analytes using a smartphone compass.

Ferris M, Zabow G Nat Commun. 2024; 15(1):2801.

PMID: 38555368 PMC: 10981709. DOI: 10.1038/s41467-024-47073-2.


References
1.
Kim G, Moon J, Moh C, Lim J . A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosens Bioelectron. 2014; 67:243-7. DOI: 10.1016/j.bios.2014.08.023. View

2.
Nelis J, Tsagkaris A, Dillon M, Hajslova J, Elliott C . Smartphone-based optical assays in the food safety field. Trends Analyt Chem. 2020; 129:115934. PMC: 7457721. DOI: 10.1016/j.trac.2020.115934. View

3.
Ponnuchamy M, Kapoor A, Pakkirisamy B, Sivaraman P, Ramasamy K . Optimization, equilibrium, kinetic and thermodynamic studies on adsorptive remediation of phenol onto natural guava leaf powder. Environ Sci Pollut Res Int. 2019; 27(17):20576-20597. DOI: 10.1007/s11356-019-07145-z. View

4.
Xu B, Guo J, Fu Y, Chen X, Guo J . A review on microfluidics in the detection of food pesticide residues. Electrophoresis. 2019; 41(10-11):821-832. DOI: 10.1002/elps.201900209. View

5.
Poltronieri P, Cimaglia F, De Lorenzis E, Chiesa M, Mezzolla V, Reca I . Protein Chips for Detection of Salmonella spp. from Enrichment Culture. Sensors (Basel). 2016; 16(4). PMC: 4851088. DOI: 10.3390/s16040574. View