» Articles » PMID: 34795251

Impact Damping and Vibration Attenuation in Nematic Liquid Crystal Elastomers

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Nov 19
PMID 34795251
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Nematic liquid crystal elastomers (LCE) exhibit unique mechanical properties, placing them in a category distinct from other viscoelastic systems. One of their most celebrated properties is the 'soft elasticity', leading to a wide plateau of low, nearly-constant stress upon stretching, a characteristically slow stress relaxation, enhanced surface adhesion, and other remarkable effects. The dynamic soft response of LCE to shear deformations leads to the extremely large loss behaviour with the loss factor tanδ approaching unity over a wide temperature and frequency ranges, with clear implications for damping applications. Here we investigate this effect of anomalous damping, optimising the impact and vibration geometries to reach the greatest benefits in vibration isolation and impact damping by accessing internal shear deformation modes. We compare impact energy dissipation in shaped samples and projectiles, with elastic wave transmission and resonance, finding a good correlation between the results of such diverse tests. By comparing with ordinary elastomers used for industrial damping, we demonstrate that the nematic LCE is an exceptional damping material and propose directions that should be explored for further improvements in practical damping applications.

Citing Articles

Elastic Characterization of Acrylate-Based Liquid Crystal Elastomers.

Gevorgyan G, Sargsyan M, Hakobyan M, Reynolds M, Gleeson H, Hakobyan R Polymers (Basel). 2025; 17(5).

PMID: 40076107 PMC: 11902791. DOI: 10.3390/polym17050614.


A material dynamically enhancing both load-bearing and energy dissipation capability under cyclic loading.

Sun B, Kitchen G, He D, Malu D, Ding J, Huang Y Sci Adv. 2025; 11(6):eadt3979.

PMID: 39919188 PMC: 11804925. DOI: 10.1126/sciadv.adt3979.


Robust liquid crystal semi-interpenetrating polymer network with superior energy-dissipation performance.

Yang Z, Yang Y, Liang H, He E, Xu H, Liu Y Nat Commun. 2024; 15(1):9902.

PMID: 39548105 PMC: 11568150. DOI: 10.1038/s41467-024-54233-x.


Overdamping of vibration resonances by liquid crystal elastomers.

Elmadih W, Terentjev A, Liang H, Terentjev E Sci Rep. 2024; 14(1):25860.

PMID: 39468276 PMC: 11519887. DOI: 10.1038/s41598-024-76952-3.


Soft elasticity enabled adhesion enhancement of liquid crystal elastomers on rough surfaces.

Annapooranan R, Yeerella R, Chambers R, Li C, Cai S Proc Natl Acad Sci U S A. 2024; 121(43):e2412635121.

PMID: 39405355 PMC: 11513982. DOI: 10.1073/pnas.2412635121.


References
1.
Clarke , Terentjev , Kundler I , Finkelmann . Texture Evolution during the Polydomain-Monodomain Transition in Nematic Elastomers. Macromolecules. 1998; 31(15):4862-72. DOI: 10.1021/ma980195j. View

2.
Shaha R, Merkel D, Anderson M, Devereaux E, Patel R, Torbati A . Biocompatible liquid-crystal elastomers mimic the intervertebral disc. J Mech Behav Biomed Mater. 2020; 107:103757. DOI: 10.1016/j.jmbbm.2020.103757. View

3.
Rousseau I, Mather P . Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J Am Chem Soc. 2003; 125(50):15300-1. DOI: 10.1021/ja039001s. View

4.
Traugutt N, Mistry D, Luo C, Yu K, Ge Q, Yakacki C . Liquid-Crystal-Elastomer-Based Dissipative Structures by Digital Light Processing 3D Printing. Adv Mater. 2020; 32(28):e2000797. DOI: 10.1002/adma.202000797. View

5.
Terentjev E, Hotta A, Clarke S, Warner M . Liquid crystalline elastomers: dynamics and relaxation of microstructure. Philos Trans A Math Phys Eng Sci. 2003; 361(1805):653-63; discussion 663-4. DOI: 10.1098/rsta.2002.1155. View