» Articles » PMID: 34793485

Recombinant Production of a Functional SARS-CoV-2 Spike Receptor Binding Domain in the Green Algae Chlamydomonas Reinhardtii

Overview
Journal PLoS One
Date 2021 Nov 18
PMID 34793485
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Recombinant production of viral proteins can be used to produce vaccine antigens or reagents to identify antibodies in patient serum. Minimally, these proteins must be correctly folded and have appropriate post-translation modifications. Here we report the production of the SARS-CoV-2 spike protein Receptor Binding Domain (RBD) in the green algae Chlamydomonas. RBD fused to a fluorescent reporter protein accumulates as an intact protein when targeted for ER-Golgi retention or secreted from the cell, while a chloroplast localized version is truncated. The ER-retained RBD fusion protein was able to bind the human ACE2 receptor, the host target of SARS-CoV-2, and was specifically out-competed by mammalian cell-produced recombinant RBD, suggesting that the algae produced proteins are sufficiently post-translationally modified to act as authentic SARS-CoV-2 antigens. Because algae can be grown at large scale very inexpensively, this recombinant protein may be a low cost alternative to other expression platforms.

Citing Articles

Protein Expression Platforms and the Challenges of Viral Antigen Production.

Sookhoo J, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S Vaccines (Basel). 2025; 12(12.

PMID: 39772006 PMC: 11680109. DOI: 10.3390/vaccines12121344.


Fine-tuning the N-glycosylation of recombinant human erythropoietin using Chlamydomonas reinhardtii mutants.

Leprovost S, Plasson C, Balieu J, Walet-Balieu M, Lerouge P, Bardor M Plant Biotechnol J. 2024; 22(11):3018-3027.

PMID: 38968612 PMC: 11500980. DOI: 10.1111/pbi.14424.


The red alga as a host for molecular farming: Efficient production of immunologically active hepatitis C virus glycoprotein.

Hammel A, Cucos L, Caras I, Ionescu I, tucureanu C, Tofan V Proc Natl Acad Sci U S A. 2024; 121(24):e2400145121.

PMID: 38833465 PMC: 11181018. DOI: 10.1073/pnas.2400145121.


A Modular Cloning Toolkit for the production of recombinant proteins in .

Hieronimus K, Donauer T, Klein J, Hinkel B, Spanle J, Probst A Microb Cell. 2024; 11:128-142.

PMID: 38799406 PMC: 11121976. DOI: 10.15698/mic2024.04.821.


Therapeutic proteins: developments, progress, challenges, and future perspectives.

Kumar V, Barwal A, Sharma N, Mir D, Kumar P, Kumar V 3 Biotech. 2024; 14(4):112.

PMID: 38510462 PMC: 10948735. DOI: 10.1007/s13205-024-03958-z.


References
1.
Gimpel J, Hyun J, Schoepp N, Mayfield S . Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol Bioeng. 2014; 112(2):339-45. DOI: 10.1002/bit.25357. View

2.
Amanat F, Stadlbauer D, Strohmeier S, Nguyen T, Chromikova V, McMahon M . A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020; 26(7):1033-1036. PMC: 8183627. DOI: 10.1038/s41591-020-0913-5. View

3.
Liu L, Wang P, Nair M, Yu J, Rapp M, Wang Q . Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 2020; 584(7821):450-456. DOI: 10.1038/s41586-020-2571-7. View

4.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-82. PMC: 3855844. DOI: 10.1038/nmeth.2019. View

5.
Chen W, Du L, Chag S, Ma C, Tricoche N, Tao X . Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate. Hum Vaccin Immunother. 2013; 10(3):648-58. PMC: 4130269. DOI: 10.4161/hv.27464. View