Improved Recognition of Splice Sites in by Incorporating Secondary Structure Information into Sequence-derived Features: a Computational Study
Overview
Overview
Journal
3 Biotech
Publisher
Springer
Specialty
Biotechnology
Date
2021 Nov 18
PMID
34790508
Citations
1
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-03036-8.
Citing Articles
Meher P, Begam S, Sahu T, Gupta A, Kumar A, Kumar U Int J Mol Sci. 2022; 23(3).
PMID: 35163534 PMC: 8835813. DOI: 10.3390/ijms23031612.
References
1.
Meher P, Sahu T, Rao A, Wahi S
. A computational approach for prediction of donor splice sites with improved accuracy. J Theor Biol. 2016; 404:285-294.
DOI: 10.1016/j.jtbi.2016.06.013.
View
2.
Rogic S, Montpetit B, Hoos H, Mackworth A, Ouellette B, Hieter P
. Correlation between the secondary structure of pre-mRNA introns and the efficiency of splicing in Saccharomyces cerevisiae. BMC Genomics. 2008; 9:355.
PMC: 2536676.
DOI: 10.1186/1471-2164-9-355.
View
3.
Baten A, Chang B, Halgamuge S, Li J
. Splice site identification using probabilistic parameters and SVM classification. BMC Bioinformatics. 2007; 7 Suppl 5:S15.
PMC: 1764471.
DOI: 10.1186/1471-2105-7-S5-S15.
View
4.
Li J, Wang L, Wang H, Bai L, Yuan Z
. High-accuracy splice site prediction based on sequence component and position features. Genet Mol Res. 2012; 11(3):3432-51.
DOI: 10.4238/2012.September.25.12.
View
5.
Hofacker I
. Vienna RNA secondary structure server. Nucleic Acids Res. 2003; 31(13):3429-31.
PMC: 169005.
DOI: 10.1093/nar/gkg599.
View