Isolating Polaritonic 2D-IR Transmission Spectra
Overview
Affiliations
Strong coupling between vibrational transitions in molecules within a resonant optical microcavity leads to the formation of collective, delocalized vibrational polaritons. There are many potential applications of "polaritonic chemistry", ranging from modified chemical reactivity to quantum information processing. One challenge in obtaining the polaritonic response is removing a background contribution due to the uncoupled molecules that generate an ordinary 2D-IR spectrum whose amplitude is filtered by the polariton transmission spectrum. We show that most features in 2D-IR spectra of vibrational polaritons can be explained by a linear superposition of this background signal and the true polariton response. Through a straightforward correction procedure, in which the filtered bare-molecule 2D-IR spectrum is subtracted from the measured cavity response, we recover the polaritonic spectrum.
Liu T, Yin G, Xiong W Chem Sci. 2025; 16(11):4676-4683.
PMID: 39950062 PMC: 11817099. DOI: 10.1039/d4sc07053d.
Sufrin S, Cohn B, Chuntonov L Nanophotonics. 2024; 13(14):2523-2530.
PMID: 39678654 PMC: 11636414. DOI: 10.1515/nanoph-2023-0683.
The role of IR inactive mode in W(CO) polariton relaxation process.
Hirschmann O, Bhakta H, Xiong W Nanophotonics. 2024; 13(11):2029-2034.
PMID: 39635079 PMC: 11501596. DOI: 10.1515/nanoph-2023-0589.
Ultrafast Spectroscopy under Vibrational Strong Coupling in Diphenylphosphoryl Azide.
Stemo G, Nishiuchi J, Bhakta H, Mao H, Wiesehan G, Xiong W J Phys Chem A. 2024; 128(10):1817-1824.
PMID: 38437187 PMC: 10945483. DOI: 10.1021/acs.jpca.3c07847.
Molecular Polaritons for Chemistry, Photonics and Quantum Technologies.
Xiang B, Xiong W Chem Rev. 2024; 124(5):2512-2552.
PMID: 38416701 PMC: 10941193. DOI: 10.1021/acs.chemrev.3c00662.