» Articles » PMID: 34781859

4-Thiofuranoid Glycal: Versatile Glycosyl Donor for the Selective Synthesis of β-anomer of 4'-thionucleoside and Its Biological Activities

Overview
Journal Curr Med Chem
Specialty Chemistry
Date 2021 Nov 16
PMID 34781859
Authors
Affiliations
Soon will be listed here.
Abstract

The first highly diastereoselective synthesis of β-anomers of 4'-thionucleosides has been carried out by means of electrophilic glycosidation utilizing 3,5-O-(di-tertbutylsilylene) (DTBS)-4-thiofuranoid glycal as a glycosyl donor. The resulting glycosides were transformed into ribo-, 2'-deoxy-, and arabinofuranosyl nucleosides through a chemical transformation of the 2'-substituent. The additive Pummerer reaction of the glycal Soxide gave 1,2-di-O-acetyl-3,5-O-DTBS-4-thioribofuranose. The utility of the DTBSprotected 4-thioribofuranose has been demonstrated by the preparation of 4'-thio analogues of pyrimidine- and purine-4'-thioribonucleosides based on the Vorbrüggen glycosidation. Synthesis of 4'-thio-counterpart of C-nucleoside antibiotic tiazofurin has also been carried out. α-Face selective hydroboration of 1-C-aryl- or 1-C-heteroaryl-glycals obtained by cross-coupling of 1-tributylstannylglycal has furnished the respective β- anomer of 4'-thio-C-ribonucleosides, including 4'-thio analogue of nucleoside antibiotic pseudouridine and 9-deazaadenosine. On the basis of lithiation chemistry, 1-C- and 2-Ccarbon- carbon-substituted 3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3- diyl) (TIPDS)- 4- thiofuranoid glycal were synthesized. These glycals enabled us to prepare 1'-C- and 2'-β- C-carbon-substituted 2'-deoxy-4'-thionucleosides, including thio-counterpart of antitumor nucleoside antibiotic angustmycin C. Furthermore, 1'-C-methyl-4'-thiothymidine emerged as a potent inhibitor of angiogenesis. In addition, 1'-C-methyl-4'-thiothymidine exhibited more potent inhibitory activity against thymidine kinase-deficient mutant of herpes virus than that of ganciclovir. Among the 4'-substituted 4'-thiothymidines, the 4'- C-cyano- and 4'-C-ethynyl derivatives inhibited replication of HIV variant resistant to 3TC (HIVM184V) as potently as HIV-1IIIB. In terms of the value of selectivity index (SI), 4'-C-cyano-4'-thiothymidine showed a 3-fold selective index (SI) than that of the corresponding thymidine derivative. Furthermore, 4'-C-ethynyl-2'-deoxy-4'-thioguanosine has a 20-fold better value (>18,200) than that of 2'-deoxyguanosine counterpart (933). Furthermore, 4'-azido-4'-thiothymidine emerged as a selective and potent anti-EBV agent. In terms of antineoplastic activity, 4'-azido- and 4'-C-fluoromethyl-2'-deoxy-4'-thiocytidine inhibited proliferation of human B-cell (CCRF-SB) and T-cell leukemia (Molt-4) cell lines, although the parent compound 2'-deoxy-4'-thiocytidine did not exhibit any cytotoxicity up to 100 μM. These facts concerning the biological activities suggested that replacement of the furanose oxygen with a sulfur atom is a promising approach for the development of less toxic antiviral and antineoplastic nucleoside antimetabolites. 4'- Thionucleoside also acts as a monomer for oligonucleotides (ONs) therapeutics, exhibiting superior biological properties. Therefore, this review provides a wide range of potential monomers for antisense ON and siRNA.