» Articles » PMID: 34759261

Enhanced Protective Immunity Against SARS-CoV-2 Elicited by a VSV Vector Expressing a Chimeric Spike Protein

Abstract

SARS-CoV-2 and SARS-CoV are genetically related coronavirus and share the same cellular receptor ACE2. By replacing the VSV glycoprotein with the spikes (S) of SARS-CoV-2 and SARS-CoV, we generated two replication-competent recombinant viruses, rVSV-SARS-CoV-2 and rVSV-SARS-CoV. Using wild-type and human ACE2 (hACE2) knock-in mouse models, we found a single dose of rVSV-SARS-CoV could elicit strong humoral immune response via both intranasal (i.n.) and intramuscular (i.m.) routes. Despite the high genetic similarity between SARS-CoV-2 and SARS-CoV, no obvious cross-neutralizing activity was observed in the immunized mice sera. In macaques, neutralizing antibody (NAb) titers induced by one i.n. dose of rVSV-SARS-CoV-2 were eight-fold higher than those by a single i.m. dose. Thus, our data indicates that rVSV-SARS-CoV-2 might be suitable for i.n. administration instead of the traditional i.m. immunization in human. Because rVSV-SARS-CoV elicited significantly stronger NAb responses than rVSV-SARS-CoV-2 in a route-independent manner, we generated a chimeric antigen by replacing the receptor binding domain (RBD) of SARS-CoV S with that from the SARS-CoV-2. rVSV expressing the chimera (rVSV-SARS-CoV/2-RBD) induced significantly increased NAbs against SARS-CoV-2 in mice and macaques than rVSV-SARS-CoV-2, with a safe Th1-biased response. Serum immunized with rVSV-SARS-CoV/2-RBD showed no cross-reactivity with SARS-CoV. hACE2 mice receiving a single i.m. dose of either rVSV-SARS-CoV-2 or rVSV-SARS-CoV/2-RBD were fully protected against SARS-CoV-2 challenge without obvious lesions in the lungs. Our results suggest that transplantation of SARS-CoV-2 RBD into the S protein of SARS-CoV might be a promising antigen design for COVID-19 vaccines.

Citing Articles

N6-methyladenosine RNA modification promotes Severe Fever with Thrombocytopenia Syndrome Virus infection.

Chen Z, Zhang J, Wang J, Tong H, Pan W, Ma F PLoS Pathog. 2024; 20(11):e1012725.

PMID: 39585899 PMC: 11627400. DOI: 10.1371/journal.ppat.1012725.


Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control.

Wang S, Li W, Wang Z, Yang W, Li E, Xia X Signal Transduct Target Ther. 2024; 9(1):223.

PMID: 39256346 PMC: 11412324. DOI: 10.1038/s41392-024-01917-x.


Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform.

Zhu J, Tao P, Chopra A, Rao V Annu Rev Virol. 2024; 11(1):395-420.

PMID: 38768614 PMC: 11690488. DOI: 10.1146/annurev-virology-111821-111145.


Immunogenicity of mucosal COVID-19 vaccine candidates based on the highly attenuated vesicular stomatitis virus vector (VSV) in golden syrian hamster.

Ke Y, Zhang E, Guo J, Zhang X, Wang L, Chen D Acta Pharm Sin B. 2023; 13(12):4856-4874.

PMID: 38045049 PMC: 10692390. DOI: 10.1016/j.apsb.2023.08.023.


Recombinant Lactococcus lactis Expressing Human LL-37 Prevents Deaths from Viral Infections in Piglets and Chicken.

Zhang H, Dong M, Xu H, Li H, Zheng A, Sun G Probiotics Antimicrob Proteins. 2023; 16(6):2150-2160.

PMID: 37743432 DOI: 10.1007/s12602-023-10155-6.


References
1.
Zhu Y, Yu D, Han Y, Yan H, Chong H, Ren L . Cross-reactive neutralization of SARS-CoV-2 by serum antibodies from recovered SARS patients and immunized animals. Sci Adv. 2020; 6(45). PMC: 7673700. DOI: 10.1126/sciadv.abc9999. View

2.
Hoffmann M, Kleine-Weber H, Pohlmann S . A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020; 78(4):779-784.e5. PMC: 7194065. DOI: 10.1016/j.molcel.2020.04.022. View

3.
Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M . A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020; 369(6504):650-655. PMC: 7319273. DOI: 10.1126/science.abc6952. View

4.
Walls A, Park Y, Tortorici M, Wall A, McGuire A, Veesler D . Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 183(6):1735. PMC: 7833104. DOI: 10.1016/j.cell.2020.11.032. View

5.
Cao W, Liu W, Zhang P, Zhang F, Richardus J . Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007; 357(11):1162-3. DOI: 10.1056/NEJMc070348. View