» Articles » PMID: 34758082

Alveolar Progenitor Differentiation and Lactation Depends on Paracrine Inhibition of Notch Via ROBO1/CTNNB1/JAG1

Overview
Journal Development
Specialty Biology
Date 2021 Nov 10
PMID 34758082
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

In the mammary gland, how alveolar progenitor cells are recruited to fuel tissue growth with each estrus cycle and pregnancy remains poorly understood. Here, we identify a regulatory pathway that controls alveolar progenitor differentiation and lactation by governing Notch activation in mouse. Loss of Robo1 in the mammary gland epithelium activates Notch signaling, which expands the alveolar progenitor cell population at the expense of alveolar differentiation, resulting in compromised lactation. ROBO1 is expressed in both luminal and basal cells, but loss of Robo1 in basal cells results in the luminal differentiation defect. In the basal compartment, ROBO1 inhibits the expression of Notch ligand Jag1 by regulating β-catenin (CTNNB1), which binds the Jag1 promoter. Together, our studies reveal how ROBO1/CTTNB1/JAG1 signaling in the basal compartment exerts paracrine control of Notch signaling in the luminal compartment to regulate alveolar differentiation during pregnancy.

Citing Articles

SLIT Loss or Sequestration Increases Mammary Alveologenesis and Lactogenesis.

Cazares O, Chen M, Menendez J, Molinuevo R, Thomas G, Cervantes J MicroPubl Biol. 2024; 2024.

PMID: 39381643 PMC: 11461027. DOI: 10.17912/micropub.biology.001264.


Comparative proteomic analysis of human milk fat globules and paired membranes and mouse milk fat globules identifies core cellular systems contributing to mammary lipid trafficking and secretion.

Martin Carli J, Dzieciatkowska M, Hernandez T, Monks J, McManaman J Front Mol Biosci. 2024; 10:1259047.

PMID: 38169886 PMC: 10759240. DOI: 10.3389/fmolb.2023.1259047.


Kindlin-2 in myoepithelium controls luminal progenitor commitment to alveoli in mouse mammary gland.

Wang Z, Zhang L, Li B, Song J, Yu M, Zhang J Cell Death Dis. 2023; 14(10):675.

PMID: 37833248 PMC: 10576046. DOI: 10.1038/s41419-023-06184-2.


Parallels in signaling between development and regeneration in ectodermal organs.

Pincha N, Marangoni P, Haque A, Klein O Curr Top Dev Biol. 2022; 149:373-419.

PMID: 35606061 PMC: 10049776. DOI: 10.1016/bs.ctdb.2022.02.006.

References
1.
Fouquet C, Di Meglio T, Ma L, Kawasaki T, Long H, Hirata T . Robo1 and robo2 control the development of the lateral olfactory tract. J Neurosci. 2007; 27(11):3037-45. PMC: 6672566. DOI: 10.1523/JNEUROSCI.0172-07.2007. View

2.
Wuidart A, Ousset M, Rulands S, Simons B, Van Keymeulen A, Blanpain C . Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 2016; 30(11):1261-77. PMC: 4911926. DOI: 10.1101/gad.280057.116. View

3.
Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P . Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol. 2001; 153(3):555-68. PMC: 2190562. DOI: 10.1083/jcb.153.3.555. View

4.
Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat M, Oakes S . Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008; 3(4):429-41. DOI: 10.1016/j.stem.2008.08.001. View

5.
Chakrabarti R, Wei Y, Romano R, DeCoste C, Kang Y, Sinha S . Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells. 2012; 30(7):1496-508. PMC: 5606133. DOI: 10.1002/stem.1112. View