» Articles » PMID: 34757785

Brightening of Dark Excitons in 2D Perovskites

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Nov 10
PMID 34757785
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Optically inactive dark exciton states play an important role in light emission processes in semiconductors because they provide an efficient nonradiative recombination channel. Understanding the exciton fine structure in materials with potential applications in light-emitting devices is therefore critical. Here, we investigate the exciton fine structure in the family of two-dimensional (2D) perovskites (PEA)SnI, (PEA)PbI, and (PEA)PbBr. In-plane magnetic field mixes the bright and dark exciton states, brightening the otherwise optically inactive dark exciton. The bright-dark splitting increases with increasing exciton binding energy. Hot photoluminescence is observed, indicative of a non-Boltzmann distribution of the bright-dark exciton populations. We attribute this to the phonon bottleneck, which results from the weak exciton–acoustic phonon coupling in soft 2D perovskites. Hot photoluminescence is responsible for the strong emission observed in these materials, despite the substantial bright-dark exciton splitting.

Citing Articles

Chiral europium halides with high-performance magnetic field tunable red circularly polarized luminescence at room temperature.

Niu X, Li Y, Lu H, Wang Z, Zhang Y, Shao T Nat Commun. 2025; 16(1):2525.

PMID: 40082417 PMC: 11906753. DOI: 10.1038/s41467-025-57620-0.


Phonon Directionality Impacts Electron-Phonon Coupling and Polarization of the Band-Edge Emission in Two-Dimensional Metal Halide Perovskites.

Krahne R, Schleusener A, Faraji M, Li L, Lin M, Tan P Nano Lett. 2024; 24(35):11124-11131.

PMID: 39171793 PMC: 11378763. DOI: 10.1021/acs.nanolett.4c03543.


Tunable single emitter-cavity coupling strength through waveguide-assisted energy quantum transfer.

Liu Y, Zhou H, Lin L, Sun H Light Sci Appl. 2024; 13(1):171.

PMID: 39025842 PMC: 11258325. DOI: 10.1038/s41377-024-01508-z.


Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite.

Li S, Xu X, Kocoj C, Zhou C, Li Y, Chen D Nat Commun. 2024; 15(1):2573.

PMID: 38519487 PMC: 10959982. DOI: 10.1038/s41467-024-46851-2.


Bright Excitonic Fine Structure in Metal-Halide Perovskites: From Two-Dimensional to Bulk.

Posmyk K, Zawadzka N, Kipczak L, Dyksik M, Surrente A, Maude D J Am Chem Soc. 2024; 146(7):4687-4694.

PMID: 38324275 PMC: 10885139. DOI: 10.1021/jacs.3c11957.


References
1.
Do T, Del Aguila A, Zhang D, Xing J, Liu S, Prosnikov M . Bright Exciton Fine-Structure in Two-Dimensional Lead Halide Perovskites. Nano Lett. 2020; 20(7):5141-5148. DOI: 10.1021/acs.nanolett.0c01364. View

2.
Chernikov A, van der Zande A, Hill H, Rigosi A, Velauthapillai A, Hone J . Electrical Tuning of Exciton Binding Energies in Monolayer WS_{2}. Phys Rev Lett. 2015; 115(12):126802. DOI: 10.1103/PhysRevLett.115.126802. View

3.
Qin C, Sandanayaka A, Zhao C, Matsushima T, Zhang D, Fujihara T . Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature. 2020; 585(7823):53-57. DOI: 10.1038/s41586-020-2621-1. View

4.
He K, Kumar N, Zhao L, Wang Z, Mak K, Zhao H . Tightly bound excitons in monolayer WSe(2). Phys Rev Lett. 2014; 113(2):026803. DOI: 10.1103/PhysRevLett.113.026803. View

5.
Blancon J, Stier A, Tsai H, Nie W, Stoumpos C, Traore B . Scaling law for excitons in 2D perovskite quantum wells. Nat Commun. 2018; 9(1):2254. PMC: 5993799. DOI: 10.1038/s41467-018-04659-x. View