» Articles » PMID: 34737314

Fast Wide-field Upconversion Luminescence Lifetime Thermometry Enabled by Single-shot Compressed Ultrahigh-speed Imaging

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Nov 5
PMID 34737314
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Photoluminescence lifetime imaging of upconverting nanoparticles is increasingly featured in recent progress in optical thermometry. Despite remarkable advances in photoluminescent temperature indicators, existing optical instruments lack the ability of wide-field photoluminescence lifetime imaging in real time, thus falling short in dynamic temperature mapping. Here, we report video-rate upconversion temperature sensing in wide field using single-shot photoluminescence lifetime imaging thermometry (SPLIT). Developed from a compressed-sensing ultrahigh-speed imaging paradigm, SPLIT first records wide-field luminescence intensity decay compressively in two views in a single exposure. Then, an algorithm, built upon the plug-and-play alternating direction method of multipliers, is used to reconstruct the video, from which the extracted lifetime distribution is converted to a temperature map. Using the core/shell NaGdF:Er,Yb/NaGdF upconverting nanoparticles as the lifetime-based temperature indicators, we apply SPLIT in longitudinal wide-field temperature monitoring beneath a thin scattering medium. SPLIT also enables video-rate temperature mapping of a moving biological sample at single-cell resolution.

Citing Articles

Rise and Decay of Photoluminescence in Upconverting Lanthanide-Doped Nanocrystals.

Vonk S, Maris J, Dekker A, de Wit J, van Swieten T, Cocina A ACS Nano. 2024; 18(41):28325-28334.

PMID: 39368106 PMC: 11483940. DOI: 10.1021/acsnano.4c09945.


High-throughput fluorescence lifetime imaging flow cytometry.

Kanno H, Hiramatsu K, Mikami H, Nakayashiki A, Yamashita S, Nagai A Nat Commun. 2024; 15(1):7376.

PMID: 39231964 PMC: 11375057. DOI: 10.1038/s41467-024-51125-y.


Fluorescent Nanodiamonds for High-Resolution Thermometry in Biology.

Ermakova A Nanomaterials (Basel). 2024; 14(15).

PMID: 39120422 PMC: 11313720. DOI: 10.3390/nano14151318.


Discrete Illumination-Based Compressed Ultrafast Photography for High-Fidelity Dynamic Imaging.

Yao J, Guo Z, Qi D, Xu S, Lin W, Cheng L Adv Sci (Weinh). 2024; 11(41):e2403854.

PMID: 39120051 PMC: 11538675. DOI: 10.1002/advs.202403854.


Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D.

Park J, Gao L Curr Opin Solid State Mater Sci. 2024; 30.

PMID: 39086551 PMC: 11290093. DOI: 10.1016/j.cossms.2024.101147.


References
1.
Liang J . Punching holes in light: recent progress in single-shot coded-aperture optical imaging. Rep Prog Phys. 2020; 83(11):116101. DOI: 10.1088/1361-6633/abaf43. View

2.
Wang C, Xu R, Tian W, Jiang X, Cui Z, Wang M . Determining intracellular temperature at single-cell level by a novel thermocouple method. Cell Res. 2011; 21(10):1517-9. PMC: 3193458. DOI: 10.1038/cr.2011.117. View

3.
Jaque D, Vetrone F . Luminescence nanothermometry. Nanoscale. 2012; 4(15):4301-26. DOI: 10.1039/c2nr30764b. View

4.
Liang J, Wang P, Zhu L, Wang L . Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nat Commun. 2020; 11(1):5252. PMC: 7567836. DOI: 10.1038/s41467-020-19065-5. View

5.
Jacques S . Optical properties of biological tissues: a review. Phys Med Biol. 2013; 58(11):R37-61. DOI: 10.1088/0031-9155/58/11/R37. View