» Articles » PMID: 34729468

Microbial Fuel Cells and Their Electrified Biofilms

Overview
Journal Biofilm
Date 2021 Nov 3
PMID 34729468
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Bioelectrochemical systems (BES) represent a wide range of different biofilm-based bioreactors that includes microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The first described bioelectrical bioreactor is the Microbial Fuel Cell and with the exception of MDCs, it is the only type of BES that actually produces harvestable amounts of electricity, rather than requiring an electrical input to function. For these reasons, this review article, with previously unpublished supporting data, focusses primarily on MFCs. Of relevance is the architecture of these bioreactors, the type of membrane they employ (if any) for separating the chambers along with the size, as well as the geometry and material composition of the electrodes which support biofilms. Finally, the structure, properties and growth rate of the microbial biofilms colonising anodic electrodes, are of critical importance for rendering these devices, functional living 'engines' for a wide range of applications.

Citing Articles

Recent Advances in Scaling up Bioelectrochemical Systems: A Review.

Corona-Martinez D, Martinez-Amador S, Rodriguez-De la Garza J, Laredo-Alcala E, Perez-Rodriguez P BioTech (Basel). 2025; 14(1).

PMID: 39982275 PMC: 11843991. DOI: 10.3390/biotech14010008.


Revolutionizing dairy waste: emerging solutions in conjunction with microbial engineering.

Bhatia R, Singh S, Kumar V, Taneja N, Oberoi H, Chauhan K Biodegradation. 2024; 36(1):6.

PMID: 39546049 DOI: 10.1007/s10532-024-10104-2.


The influence of benzene on the composition, diversity and performance of the anodic bacterial community in glucose-fed microbial fuel cells.

Tyszkiewicz N, Truu J, Mlynarz P, Pasternak G Front Microbiol. 2024; 15:1384463.

PMID: 39077733 PMC: 11284109. DOI: 10.3389/fmicb.2024.1384463.


Influence of Hydrodynamic Forces on Electroactive Bacterial Adhesion in Microbial Fuel Cell Anodes.

Godain A, Vogel T, Fongarland P, Haddour N Bioengineering (Basel). 2023; 10(12).

PMID: 38135971 PMC: 10740411. DOI: 10.3390/bioengineering10121380.


An Overview of Microbial Fuel Cell Technology for Sustainable Electricity Production.

Apollon W Membranes (Basel). 2023; 13(11).

PMID: 37999370 PMC: 10672772. DOI: 10.3390/membranes13110884.


References
1.
Kharazmi A, Giwercman B, Hoiby N . Robbins device in biofilm research. Methods Enzymol. 1999; 310:207-15. DOI: 10.1016/s0076-6879(99)10018-1. View

2.
JONES H, Roth I, Sanders 3rd W . Electron microscopic study of a slime layer. J Bacteriol. 1969; 99(1):316-25. PMC: 250005. DOI: 10.1128/jb.99.1.316-325.1969. View

3.
Debabov V . [Electricity from microorganisms]. Mikrobiologiia. 2008; 77(2):149-57. View

4.
Ishii S, Suzuki S, Norden-Krichmar T, Nealson K, Sekiguchi Y, Gorby Y . Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment. PLoS One. 2012; 7(2):e30495. PMC: 3274515. DOI: 10.1371/journal.pone.0030495. View

5.
Gilbert P, Evans D, Brown M . Formation and dispersal of bacterial biofilms in vivo and in situ. J Appl Bacteriol. 1993; 74 Suppl:67S-78S. DOI: 10.1111/j.1365-2672.1993.tb04343.x. View