» Articles » PMID: 34714670

Quasi-1D Exciton Channels in Strain-engineered 2D Materials

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Oct 29
PMID 34714670
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Strain engineering is a powerful tool in designing artificial platforms for high-temperature excitonic quantum devices. Combining strong light-matter interaction with robust and mobile exciton quasiparticles, two-dimensional transition metal dichalcogenides (2D TMDCs) hold great promise in this endeavor. However, realizing complex excitonic architectures based on strain-induced electronic potentials alone has proven to be exceptionally difficult so far. Here, we demonstrate deterministic strain engineering of both single-particle electronic bandstructure and excitonic many-particle interactions. We create quasi-1D transport channels to confine excitons and simultaneously enhance their mobility through locally suppressed exciton-phonon scattering. Using ultrafast, all-optical injection and time-resolved readout, we realize highly directional exciton flow with up to 100% anisotropy both at cryogenic and room temperatures. The demonstrated fundamental modification of the exciton transport properties in a deterministically strained 2D material with effectively tunable dimensionality has broad implications for both basic solid-state science and emerging technologies.

Citing Articles

Magnetically confined surface and bulk excitons in a layered antiferromagnet.

Shao Y, Dirnberger F, Qiu S, Acharya S, Terres S, Telford E Nat Mater. 2025; 24(3):391-398.

PMID: 39972108 DOI: 10.1038/s41563-025-02129-6.


Ultrafast optical properties and applications of anisotropic 2D materials.

Suk S, Seo S, Cho Y, Wang J, Sim S Nanophotonics. 2024; 13(2):107-154.

PMID: 39635300 PMC: 11501201. DOI: 10.1515/nanoph-2023-0639.


Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe.

Yanev E, Darlington T, Ladyzhets S, Strasbourg M, Trovatello C, Liu S Nat Commun. 2024; 15(1):1543.

PMID: 38378789 PMC: 10879107. DOI: 10.1038/s41467-024-45936-2.


Direct Imaging of Carrier Funneling in a Dielectric Engineered 2D Semiconductor.

Gauriot N, Ashoka A, Lim J, See S, Sung J, Rao A ACS Nano. 2024; 18(1):264-271.

PMID: 38196169 PMC: 10786151. DOI: 10.1021/acsnano.3c05957.


Recent progress of exciton transport in two-dimensional semiconductors.

Lee H, Kim Y, Ryu J, Kim S, Bae J, Koo Y Nano Converg. 2023; 10(1):57.

PMID: 38102309 PMC: 10724105. DOI: 10.1186/s40580-023-00404-3.


References
1.
Dirnberger F, Abujetas D, Konig J, Forsch M, Koller T, Gronwald I . Tuning Spontaneous Emission through Waveguide Cavity Effects in Semiconductor Nanowires. Nano Lett. 2019; 19(10):7287-7292. DOI: 10.1021/acs.nanolett.9b02883. View

2.
Stier A, McCreary K, Jonker B, Kono J, Crooker S . Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat Commun. 2016; 7:10643. PMC: 4748133. DOI: 10.1038/ncomms10643. View

3.
Gupta S, Kutana A, Yakobson B . Heterobilayers of 2D materials as a platform for excitonic superfluidity. Nat Commun. 2020; 11(1):2989. PMC: 7293212. DOI: 10.1038/s41467-020-16737-0. View

4.
Tran K, Moody G, Wu F, Lu X, Choi J, Kim K . Evidence for moiré excitons in van der Waals heterostructures. Nature. 2019; 567(7746):71-75. PMC: 11493145. DOI: 10.1038/s41586-019-0975-z. View

5.
Castellanos-Gomez A, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant H . Local strain engineering in atomically thin MoS2. Nano Lett. 2013; 13(11):5361-6. DOI: 10.1021/nl402875m. View