» Articles » PMID: 34702817

Full Shell Coating or Cation Exchange Enhances Luminescence

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Oct 27
PMID 34702817
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Core-shell structure is routinely used for enhancing luminescence of optical nanoparticles, where the luminescent core is passivated by an inert shell. It has been intuitively accepted that the luminescence would gradually enhance with the coverage of inert shell. Here we report an "off-on" effect at the interface of core-shell upconversion nanoparticles, i.e., regardless of the shell coverage, the luminescence is not much enhanced unless the core is completely encapsulated. This effect indicates that full shell coating on the luminescent core is critical to significantly enhance luminescence, which is usually neglected. Inspired by this observation, a cation exchange approach is used to block the energy transfer between core nanoparticle and surface quenchers. We find that the luminescent core exhibits enhanced luminescence after cation exchange creates an effective shell region. These findings are believed to provide a better understanding of the interfacial energy dynamics and subsequent luminescence changes.

Citing Articles

Full-course NIR-II imaging-navigated fractionated photodynamic therapy of bladder tumours with X-ray-activated nanotransducers.

He L, Wang L, Yu X, Tang Y, Jiang Z, Yang G Nat Commun. 2024; 15(1):8240.

PMID: 39300124 PMC: 11413067. DOI: 10.1038/s41467-024-52607-9.


Raspberry-like Nanoheterostructures Comprising Glutathione-Capped Gold Nanoclusters Grown on the Lanthanide Nanoparticle Surface.

Perez-Herraez I, Ferrera-Gonzalez J, Zaballos-Garcia E, Gonzalez-Bejar M, Perez-Prieto J Chem Mater. 2024; 36(9):4426-4436.

PMID: 38764750 PMC: 11099914. DOI: 10.1021/acs.chemmater.3c03333.


Ternary heterostructure-driven photoinduced electron-hole separation enhanced oxidative stress for triple-negative breast cancer therapy.

Dong S, Huang Y, Yan H, Tan H, Fan L, Chao M J Nanobiotechnology. 2024; 22(1):240.

PMID: 38735931 PMC: 11089806. DOI: 10.1186/s12951-024-02530-4.


Photoswitchable upconversion nanoparticles with excitation-dependent emission for programmed stepwise NIR phototherapy.

Zheng S, Zhang H, Sheng T, Xiang Y, Wang J, Tang Y iScience. 2023; 26(10):107859.

PMID: 37766981 PMC: 10520541. DOI: 10.1016/j.isci.2023.107859.


Suppression of Cation Intermixing Highly Boosts the Performance of Core-Shell Lanthanide Upconversion Nanoparticles.

Huang F, Bagheri N, Wang L, Agren H, Zhang J, Pu R J Am Chem Soc. 2023; 145(32):17621-17631.

PMID: 37549032 PMC: 10436270. DOI: 10.1021/jacs.3c03019.


References
1.
Marin R, Jaque D . Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chem Rev. 2020; 121(3):1425-1462. DOI: 10.1021/acs.chemrev.0c00692. View

2.
Idris N, Gnanasammandhan M, Zhang J, Ho P, Mahendran R, Zhang Y . In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med. 2012; 18(10):1580-5. DOI: 10.1038/nm.2933. View

3.
Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y . Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal Chem. 2018; 91(1):548-568. DOI: 10.1021/acs.analchem.8b04049. View

4.
Johnson N, He S, Diao S, Chan E, Dai H, Almutairi A . Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals. J Am Chem Soc. 2017; 139(8):3275-3282. DOI: 10.1021/jacs.7b00223. View

5.
Homann C, Krukewitt L, Frenzel F, Grauel B, Wurth C, Resch-Genger U . NaYF :Yb,Er/NaYF Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angew Chem Int Ed Engl. 2018; 57(28):8765-8769. DOI: 10.1002/anie.201803083. View