6.
Awasthi A, Zeng X, Li J
. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges. Environ Sci Pollut Res Int. 2016; 23(21):21141-21156.
DOI: 10.1007/s11356-016-7529-9.
View
7.
Wang X, Sun Z, Liu Y, Min X, Guo Y, Li P
. Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Bioresour Technol. 2019; 281:66-71.
DOI: 10.1016/j.biortech.2019.02.065.
View
8.
Magyarosy A, Laidlaw R, Kilaas R, Echer C, Clark D, Keasling J
. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol. 2002; 59(2-3):382-8.
DOI: 10.1007/s00253-002-1020-x.
View
9.
Wang F, Yu J, Xiong W, Xu Y, Chi R
. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge. Environ Sci Pollut Res Int. 2017; 25(2):1752-1765.
DOI: 10.1007/s11356-017-0471-7.
View
10.
Cui J, Zhang L
. Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater. 2008; 158(2-3):228-56.
DOI: 10.1016/j.jhazmat.2008.02.001.
View
11.
Faraji F, Golmohammadzadeh R, Rashchi F, Alimardani N
. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. J Environ Manage. 2018; 217:775-787.
DOI: 10.1016/j.jenvman.2018.04.043.
View
12.
Isildar A, van de Vossenberg J, Rene E, van Hullebusch E, Lens P
. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag. 2015; 57:149-157.
DOI: 10.1016/j.wasman.2015.11.033.
View
13.
Aung K, Ting Y
. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. J Biotechnol. 2005; 116(2):159-70.
DOI: 10.1016/j.jbiotec.2004.10.008.
View
14.
Nemati M, Lowenadler J, Harrison S
. Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC). Appl Microbiol Biotechnol. 2000; 53(2):173-9.
DOI: 10.1007/s002530050005.
View
15.
Zhu N, Xiang Y, Zhang T, Wu P, Dang Z, Li P
. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J Hazard Mater. 2011; 192(2):614-9.
DOI: 10.1016/j.jhazmat.2011.05.062.
View
16.
Yu Z, Han H, Feng P, Zhao S, Zhou T, Kakade A
. Recent advances in the recovery of metals from waste through biological processes. Bioresour Technol. 2019; 297:122416.
DOI: 10.1016/j.biortech.2019.122416.
View
17.
Kim M, Seo J, Choi Y, Kim G
. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Manag. 2015; 51:168-173.
DOI: 10.1016/j.wasman.2015.11.001.
View
18.
Gu W, Bai J, Lu L, Zhuang X, Zhao J, Yuan W
. Improved bioleaching efficiency of metals from waste printed circuit boards by mechanical activation. Waste Manag. 2019; 98:21-28.
DOI: 10.1016/j.wasman.2019.08.013.
View
19.
Wang Y, Song X, Zhang Y, Wang B, Zou X
. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microb Cell Fact. 2016; 15(1):146.
PMC: 4994417.
DOI: 10.1186/s12934-016-0547-y.
View
20.
Wang J, Xu Z
. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control. Environ Sci Technol. 2014; 49(2):721-33.
DOI: 10.1021/es504833y.
View