» Articles » PMID: 34685090

Metal Cluster Size-Dependent Activation Energies of Growth of Single-Chirality Single-Walled Carbon Nanotubes Inside Metallocene-Filled Single-Walled Carbon Nanotubes

Overview
Date 2021 Oct 23
PMID 34685090
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

By combining in situ annealing and Raman spectroscopy measurements, the growth dynamics of nine individual-chirality inner tubes (8,8), (12,3), (13,1), (9,6), (10,4), (11,2), (11,1), (9,3) and (9,2) with diameters from ~0.8 to 1.1 nm are monitored using a time resolution of several minutes. The growth mechanism of inner tubes implies two successive stages of the growth on the carburized and purely metallic catalytic particles, respectively, which are formed as a result of the thermally induced decomposition of metallocenes inside the outer SWCNTs. The activation energies of the growth on carburized Ni and Co catalytic particles amount to 1.85-2.57 eV and 1.80-2.71 eV, respectively. They decrease monotonically as the tube diameter decreases, independent of the metal type. The activation energies of the growth on purely metallic Ni and Co particles equal 1.49-1.91 eV and 0.77-1.79 eV, respectively. They increase as the tube diameter decreases. The activation energies of the growth of large-diameter tubes ( = ~0.95-1.10 nm) on Ni catalyst are significantly larger than on Co catalyst, whereas the values of small-diameter tubes ( = ~0.80-0.95 nm) are similar. For both metals, no dependence of the activation energies on the chirality of inner tubes is observed.

Citing Articles

Progress in Carbon Nanostructures: From Synthesis to Applications.

Kharlamova M, Kramberger C, Chernov A Nanomaterials (Basel). 2023; 13(15).

PMID: 37570499 PMC: 10420983. DOI: 10.3390/nano13152181.


Advanced Carbon Nanostructures: Synthesis, Properties, and Applications.

Kharlamova M, Kramberger C, Chernov A Nanomaterials (Basel). 2023; 13(7).

PMID: 37049361 PMC: 10097239. DOI: 10.3390/nano13071268.


Metallocene-Filled Single-Walled Carbon Nanotube Hybrids.

Kharlamova M, Kramberger C Nanomaterials (Basel). 2023; 13(4).

PMID: 36839142 PMC: 9962040. DOI: 10.3390/nano13040774.


Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications.

Kharlamova M, Kramberger C Nanomaterials (Basel). 2023; 13(4).

PMID: 36839009 PMC: 9961505. DOI: 10.3390/nano13040640.


Phemenology of Filling, Investigation of Growth Kinetics and Electronic Properties for Applications of Filled Single-Walled Carbon Nanotubes.

Kharlamova M, Kramberger C Nanomaterials (Basel). 2023; 13(2).

PMID: 36678067 PMC: 9862314. DOI: 10.3390/nano13020314.


References
1.
Saito T, Ohshima S, Okazaki T, Ohmori S, Yumura M, Iijima S . Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J Nanosci Nanotechnol. 2009; 8(11):6153-7. DOI: 10.1166/jnn.2008.sw23. View

2.
Kitaura R, Imazu N, Kobayashi K, Shinohara H . Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 2008; 8(2):693-9. DOI: 10.1021/nl073070d. View

3.
Hofmann S, Csanyi G, Ferrari A, Payne M, Robertson J . Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett. 2005; 95(3):036101. DOI: 10.1103/PhysRevLett.95.036101. View

4.
Leng Y, Shao H, Wang Y, Suzuki M, Li X . A new method to synthesize nickel carbide (Ni3C) nanoparticles in solution. J Nanosci Nanotechnol. 2006; 6(1):221-6. View

5.
Wirth C, Zhang C, Zhong G, Hofmann S, Robertson J . Diffusion- and reaction-limited growth of carbon nanotube forests. ACS Nano. 2009; 3(11):3560-6. DOI: 10.1021/nn900613e. View