» Articles » PMID: 34684996

Review of Si-Based GeSn CVD Growth and Optoelectronic Applications

Overview
Date 2021 Oct 23
PMID 34684996
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

GeSn alloys have already attracted extensive attention due to their excellent properties and wide-ranging electronic and optoelectronic applications. Both theoretical and experimental results have shown that direct bandgap GeSn alloys are preferable for Si-based, high-efficiency light source applications. For the abovementioned purposes, molecular beam epitaxy (MBE), physical vapour deposition (PVD), and chemical vapor deposition (CVD) technologies have been extensively explored to grow high-quality GeSn alloys. However, CVD is the dominant growth method in the industry, and it is therefore more easily transferred. This review is focused on the recent progress in GeSn CVD growth (including ion implantation, in situ doping technology, and ohmic contacts), GeSn detectors, GeSn lasers, and GeSn transistors. These review results will provide huge advancements for the research and development of high-performance electronic and optoelectronic devices.

Citing Articles

Review of Short-Wavelength Infrared Flip-Chip Bump Bonding Process Technology.

Du J, Zhao X, Su J, Li B, Duan X, Dong T Sensors (Basel). 2025; 25(1.

PMID: 39797054 PMC: 11723267. DOI: 10.3390/s25010263.


CMOS Scaling for the 5 nm Node and Beyond: Device, Process and Technology.

Radamson H, Miao Y, Zhou Z, Wu Z, Kong Z, Gao J Nanomaterials (Basel). 2024; 14(10).

PMID: 38786792 PMC: 11123950. DOI: 10.3390/nano14100837.


Review of Ge(GeSn) and InGaAs Avalanche Diodes Operating in the SWIR Spectral Region.

Miao Y, Lin H, Li B, Dong T, He C, Du J Nanomaterials (Basel). 2023; 13(3).

PMID: 36770566 PMC: 9922024. DOI: 10.3390/nano13030606.


Reduced Dislocation of GaAs Layer Grown on Ge-Buffered Si (001) Substrate Using Dislocation Filter Layers for an O-Band InAs/GaAs Quantum Dot Narrow-Ridge Laser.

Du Y, Wei W, Xu B, Wang G, Li B, Miao Y Micromachines (Basel). 2022; 13(10).

PMID: 36295932 PMC: 9612311. DOI: 10.3390/mi13101579.


Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices.

Nawwar M, Ghazala M, Sharaf El-Deen L, Kashyout A RSC Adv. 2022; 12(38):24518-24554.

PMID: 36128382 PMC: 9426448. DOI: 10.1039/d2ra04181b.


References
1.
Pham T, Du W, Tran H, Margetis J, Tolle J, Sun G . Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection. Opt Express. 2017; 24(5):4519-4531. DOI: 10.1364/OE.24.004519. View

2.
Fujisawa T, Arai M, Saitoh K . Microscopic gain analysis of modulation-doped GeSn/SiGeSn quantum wells: epitaxial design toward high-temperature lasing. Opt Express. 2019; 27(3):2457-2464. DOI: 10.1364/OE.27.002457. View

3.
von den Driesch N, Stange D, Rainko D, Povstugar I, Zaumseil P, Capellini G . Advanced GeSn/SiGeSn Group IV Heterostructure Lasers. Adv Sci (Weinh). 2018; 5(6):1700955. PMC: 6010800. DOI: 10.1002/advs.201700955. View

4.
Pearton S . Silicon-based spintronics. Nat Mater. 2004; 3(4):203-4. DOI: 10.1038/nmat1102. View

5.
Fang Y, Chen K, Hsieh C, Su C, Wu Y . N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility. ACS Appl Mater Interfaces. 2015; 7(48):26374-80. DOI: 10.1021/acsami.5b08518. View