» Articles » PMID: 34684033

Could a Multi-Marker and Machine Learning Approach Help Stratify Patients with Heart Failure?

Overview
Publisher MDPI
Specialty General Medicine
Date 2021 Oct 23
PMID 34684033
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

Half of the patients with heart failure (HF) have preserved ejection fraction (HFpEF). To date, there are no specific markers to distinguish this subgroup. The main objective of this work was to stratify HF patients using current biochemical markers coupled with clinical data. The cohort study included HFpEF ( = 24) and heart failure with reduced ejection fraction (HFrEF) ( = 34) patients as usually considered in clinical practice based on cardiac imaging (EF ≥ 50% for HFpEF; EF < 50% for HFrEF). Routine blood tests consisted of measuring biomarkers of renal and heart functions, inflammation, and iron metabolism. A multi-test approach and analysis of peripheral blood samples aimed to establish a computerized Machine Learning strategy to provide a blood signature to distinguish HFpEF and HFrEF. Based on logistic regression, demographic characteristics and clinical biomarkers showed no statistical significance to differentiate the HFpEF and HFrEF patient subgroups. Hence a multivariate factorial discriminant analysis, performed blindly using the data set, allowed us to stratify the two HF groups. Consequently, a Machine Learning (ML) strategy was developed using the same variables in a genetic algorithm approach. ML provided very encouraging explorative results when considering the small size of the samples applied. The accuracy and the sensitivity were high for both validation and test groups (69% and 100%, 64% and 75%, respectively). Sensitivity was 100% for the validation and 75% for the test group, whereas specificity was 44% and 55% for the validation and test groups because of the small number of samples. Lastly, the precision was acceptable, with 58% in the validation and 60% in the test group. Combining biochemical and clinical markers is an excellent entry to develop a computer classification tool to diagnose HFpEF. This translational approach is a springboard for improving new personalized treatment methods and identifying "high-yield" populations for clinical trials.

Citing Articles

Fibroblast growth factor 21 in heart failure.

Tucker W, Tucker B, Rye K, Ong K Heart Fail Rev. 2022; 28(1):261-272.

PMID: 36028609 PMC: 9902422. DOI: 10.1007/s10741-022-10268-0.

References
1.
Alcaide-Aldeano A, Garay A, Alcoberro L, Jimenez-Marrero S, Yun S, Tajes M . Iron Deficiency: Impact on Functional Capacity and Quality of Life in Heart Failure with Preserved Ejection Fraction. J Clin Med. 2020; 9(4). PMC: 7230551. DOI: 10.3390/jcm9041199. View

2.
Fadini G, Mehta A, Dhindsa D, Bonora B, Sreejit G, Nagareddy P . Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J. 2020; 41(44):4271-4282. PMC: 7825095. DOI: 10.1093/eurheartj/ehz923. View

3.
Ho J, Enserro D, Brouwers F, Kizer J, Shah S, Psaty B . Predicting Heart Failure With Preserved and Reduced Ejection Fraction: The International Collaboration on Heart Failure Subtypes. Circ Heart Fail. 2016; 9(6). PMC: 4902276. DOI: 10.1161/CIRCHEARTFAILURE.115.003116. View

4.
Zhang Y, Bauersachs J, Langer H . Immune mechanisms in heart failure. Eur J Heart Fail. 2017; 19(11):1379-1389. DOI: 10.1002/ejhf.942. View

5.
Chen Y, Wong L, Liew O, Richards A . Heart Failure with Reduced Ejection Fraction (HFrEF) and Preserved Ejection Fraction (HFpEF): The Diagnostic Value of Circulating MicroRNAs. Cells. 2020; 8(12). PMC: 6952981. DOI: 10.3390/cells8121651. View