6.
Dvir H, Silman I, Harel M, Rosenberry T, Sussman J
. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact. 2010; 187(1-3):10-22.
PMC: 2894301.
DOI: 10.1016/j.cbi.2010.01.042.
View
7.
Tang S, Wong P, Cannon J, Yang K, Bowden S, Bhattacharjee S
. Hydrophilic scaffolds of oxime as the potent catalytic inactivator of reactive organophosphate. Chem Biol Interact. 2018; 297:67-79.
DOI: 10.1016/j.cbi.2018.10.022.
View
8.
Franklin M, Rudolph M, Ginter C, Cassidy M, Cheung J
. Structures of paraoxon-inhibited human acetylcholinesterase reveal perturbations of the acyl loop and the dimer interface. Proteins. 2016; 84(9):1246-56.
DOI: 10.1002/prot.25073.
View
9.
Wu G, Gao Y, Kang D, Huang B, Huo Z, Liu H
. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. Medchemcomm. 2018; 9(1):149-159.
PMC: 6071962.
DOI: 10.1039/c7md00457e.
View
10.
Mercey G, Verdelet T, Renou J, Kliachyna M, Baati R, Nachon F
. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc Chem Res. 2012; 45(5):756-66.
DOI: 10.1021/ar2002864.
View
11.
Zhang Z, Wang Y, Zhang Y, Li J, Huang W, Wang L
. The synthesis and biological evaluation of novel gardenamide A derivatives as multifunctional neuroprotective agents. Medchemcomm. 2019; 10(7):1180-1186.
PMC: 6640559.
DOI: 10.1039/c9md00211a.
View
12.
Wong P, Tang S, Cannon J, Yang K, Harrison R, Ruge M
. Shielded α-Nucleophile Nanoreactor for Topical Decontamination of Reactive Organophosphate. ACS Appl Mater Interfaces. 2020; 12(30):33500-33515.
DOI: 10.1021/acsami.0c08946.
View
13.
Wong P, Bhattacharjee S, Cannon J, Tang S, Yang K, Bowden S
. Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers. Org Biomol Chem. 2019; 17(16):3951-3963.
DOI: 10.1039/c9ob00503j.
View
14.
Cohen O, Kronman C, Raveh L, Mazor O, Ordentlich A, Shafferman A
. Comparison of polyethylene glycol-conjugated recombinant human acetylcholinesterase and serum human butyrylcholinesterase as bioscavengers of organophosphate compounds. Mol Pharmacol. 2006; 70(3):1121-31.
DOI: 10.1124/mol.106.026179.
View
15.
Franjesevic A, Sillart S, Beck J, Vyas S, Callam C, Hadad C
. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chemistry. 2018; 25(21):5337-5371.
PMC: 6508893.
DOI: 10.1002/chem.201805075.
View
16.
Schopfer L, Voelker T, Bartels C, Thompson C, Lockridge O
. Reaction kinetics of biotinylated organophosphorus toxicant, FP-biotin, with human acetylcholinesterase and human butyrylcholinesterase. Chem Res Toxicol. 2005; 18(4):747-54.
DOI: 10.1021/tx049672j.
View
17.
Gorecki L, Gerlits O, Kong X, Cheng X, Blumenthal D, Taylor P
. Rational design, synthesis, and evaluation of uncharged, "smart" bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. J Biol Chem. 2020; 295(13):4079-4092.
PMC: 7105318.
DOI: 10.1074/jbc.RA119.012400.
View
18.
Sit R, Radic Z, Gerardi V, Zhang L, Garcia E, Katalinic M
. New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem. 2011; 286(22):19422-30.
PMC: 3103321.
DOI: 10.1074/jbc.M111.230656.
View
19.
Choi S
. Nanomaterial-Enabled Sensors and Therapeutic Platforms for Reactive Organophosphates. Nanomaterials (Basel). 2021; 11(1).
PMC: 7830340.
DOI: 10.3390/nano11010224.
View
20.
Huang G, McArdle J
. Novel suppression of an L-type calcium channel in neurones of murine dorsal root ganglia by 2,3-butanedione monoxime. J Physiol. 1992; 447:257-74.
PMC: 1176035.
DOI: 10.1113/jphysiol.1992.sp019001.
View