» Articles » PMID: 34610311

PIWI-mediated Control of Tissue-specific Transposons is Essential for Somatic Cell Differentiation

Overview
Journal Cell Rep
Publisher Cell Press
Date 2021 Oct 5
PMID 34610311
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

PIWI proteins are known as mediators of transposon silencing in animal germlines but are also found in adult pluripotent stem cells of highly regenerative animals, where they are essential for regeneration. Study of the nuclear PIWI protein SMEDWI-2 in the planarian somatic stem cell system reveals an intricate interplay between transposons and cell differentiation in which a subset of transposons is inevitably activated during cell differentiation, and the PIWI protein is required to regain control. Absence of SMEDWI-2 leads to tissue-specific transposon derepression related to cell-type-specific chromatin remodeling events and in addition causes reduced accessibility of lineage-specific genes and defective cell differentiation, resulting in fatal tissue dysfunction. Finally, we show that additional PIWI proteins provide a stem-cell-specific second layer of protection in planarian neoblasts. These findings reveal a far-reaching role of PIWI proteins and PIWI-interacting RNAs (piRNAs) in stem cell biology and cell differentiation.

Citing Articles

PIWI proteins and piRNAs: key regulators of stem cell biology.

Claro-Linares F, Rojas-Rios P Front Cell Dev Biol. 2025; 13:1540313.

PMID: 39981094 PMC: 11839606. DOI: 10.3389/fcell.2025.1540313.


Somatic piRNA and PIWI-mediated post-transcriptional gene regulation in stem cells and disease.

Patel M, Jiang Y, Kakumani P Front Cell Dev Biol. 2024; 12:1495035.

PMID: 39717847 PMC: 11663942. DOI: 10.3389/fcell.2024.1495035.


PIWI-interacting RNAs: who, what, when, where, why, and how.

Haase A, Ketting R, Lai E, van Rij R, Siomi M, Svoboda P EMBO J. 2024; 43(22):5335-5339.

PMID: 39327528 PMC: 11574264. DOI: 10.1038/s44318-024-00253-8.


A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals.

Konstantinidou P, Loubalova Z, Ahrend F, Friman A, Almeida M, Poulet A Cell Rep. 2024; 43(10):114777.

PMID: 39302833 PMC: 11615739. DOI: 10.1016/j.celrep.2024.114777.


A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence.

Ivankovic M, Brand J, Pandolfini L, Brown T, Pippel M, Rozanski A Nat Commun. 2024; 15(1):8215.

PMID: 39294119 PMC: 11410931. DOI: 10.1038/s41467-024-52380-9.


References
1.
Plass M, Solana J, Wolf F, Ayoub S, Misios A, Glazar P . Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science. 2018; 360(6391). DOI: 10.1126/science.aaq1723. View

2.
Lim R, Anand A, Nishimiya-Fujisawa C, Kobayashi S, Kai T . Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. Dev Biol. 2013; 386(1):237-51. DOI: 10.1016/j.ydbio.2013.12.007. View

3.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

4.
Aravin A, Sachidanandam R, Girard A, Fejes-Toth K, Hannon G . Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007; 316(5825):744-7. DOI: 10.1126/science.1142612. View

5.
Zamudio N, Barau J, Teissandier A, Walter M, Borsos M, Servant N . DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes Dev. 2015; 29(12):1256-70. PMC: 4495397. DOI: 10.1101/gad.257840.114. View