» Articles » PMID: 34604447

Preparation and Characterization of Internally Modified DNA Templates for Chemical Transcription Roadblocking

Overview
Journal Bio Protoc
Specialty Biology
Date 2021 Oct 4
PMID 34604447
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Site-specific transcription arrest is the basis of emerging technologies that assess nascent RNA structure and function. Cotranscriptionally folded RNA can be displayed from an arrested RNA polymerase (RNAP) for biochemical manipulations by halting transcription elongation at a defined DNA template position. Most transcription "roadblocking" approaches halt transcription elongation using a protein blockade that is non-covalently attached to the template DNA. I previously developed a strategy for halting RNAP at a chemical lesion, which expands the repertoire of transcription roadblocking technologies and enables sophisticated manipulations of the arrested elongation complexes. To facilitate this approach, I developed a sequence-independent method for preparing internally modified dsDNA using PCR and translesion synthesis. Here, I present a detailed protocol for the preparation and characterization of internally modified dsDNA templates for chemical transcription roadblocking experiments. Graphic abstract: Precise transcription roadblocking using functionalized DNA lesions.

Citing Articles

Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display.

Kelly S, Strobel E Nat Commun. 2025; 16(1):2350.

PMID: 40064876 PMC: 11894091. DOI: 10.1038/s41467-025-57415-3.


Observation of coordinated RNA folding events by systematic cotranscriptional RNA structure probing.

Szyjka C, Strobel E Nat Commun. 2023; 14(1):7839.

PMID: 38030633 PMC: 10687018. DOI: 10.1038/s41467-023-43395-9.


Isolation of E. coli RNA polymerase transcription elongation complexes by selective solid-phase photoreversible immobilization.

Strobel E Methods Enzymol. 2023; 691:223-250.

PMID: 37914448 PMC: 10950060. DOI: 10.1016/bs.mie.2023.03.019.

References
1.
Widom J, Nedialkov Y, Rai V, Hayes R, Brooks 3rd C, Artsimovitch I . Ligand Modulates Cross-Coupling between Riboswitch Folding and Transcriptional Pausing. Mol Cell. 2018; 72(3):541-552.e6. PMC: 6565381. DOI: 10.1016/j.molcel.2018.08.046. View

2.
Vassylyev D, Vassylyeva M, Perederina A, Tahirov T, Artsimovitch I . Structural basis for transcription elongation by bacterial RNA polymerase. Nature. 2007; 448(7150):157-62. DOI: 10.1038/nature05932. View

3.
Pupov D, Ignatov A, Agapov A, Kulbachinskiy A . Distinct effects of DNA lesions on RNA synthesis by Escherichia coli RNA polymerase. Biochem Biophys Res Commun. 2019; 510(1):122-127. DOI: 10.1016/j.bbrc.2019.01.062. View

4.
Mattila P, Korpela J, Tenkanen T, Pitkanen K . Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase--an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 1991; 19(18):4967-73. PMC: 328798. DOI: 10.1093/nar/19.18.4967. View

5.
Watters K, Strobel E, Yu A, Lis J, Lucks J . Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat Struct Mol Biol. 2016; 23(12):1124-1131. PMC: 5497173. DOI: 10.1038/nsmb.3316. View