» Articles » PMID: 34592613

High Level Xylitol Production by Pichia Fermentans Using Non-detoxified Xylose-rich Sugarcane Bagasse and Olive Pits Hydrolysates

Overview
Specialty Biophysics
Date 2021 Sep 30
PMID 34592613
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Hemicellulosic sugars, the overlooked fraction of lignocellulosic residues can serve as potential and cost-effective raw material that can be exploited for xylitol production. Xylitol is a top platform chemical with applications in food and pharmaceutical industries. Sugarcane bagasse (SCB) and olive pits (OP) are the major waste streams from sugar and olive oil industries, respectively. The current study evaluated the potential of Pichia fermentans for manufacturing of xylitol from SCB and OP hydrolysates through co-fermentation strategy. The highest xylitol accumulation was noticed with a glucose and xylose ratio of 1:10 followed by feeding with xylose alone. The fed-batch cultivation using pure xylose, SCB, and OP hydrolysates, resulted in xylitol accumulation of 102.5, 86.6 and 71.9 g/L with conversion yield of 0.78, 0.75 and 0.74 g/g, respectively. The non-pathogenic behaviour and ability to accumulate high xylitol levels from agro-industrial residues demonstrates the potential of P. fermentans as microbial cell factory.

Citing Articles

Co-substrate model development and validation on pure sugars and corncob hemicellulosic hydrolysate for xylitol production.

Feng J, Techapun C, Phimolsiripol Y, Rachtanapun P, Phongthai S, Khemacheewakul J Sci Rep. 2024; 14(1):25928.

PMID: 39472548 PMC: 11522304. DOI: 10.1038/s41598-024-77462-y.


Research progress in the biosynthesis of xylitol: feedstock evolution from xylose to glucose.

Zhang X, Zhao X, Shi X, Mei Y, Ren X, Zhao X Biotechnol Lett. 2024; 46(6):925-943.

PMID: 39340754 DOI: 10.1007/s10529-024-03535-7.


Valorisation of corncob into furfuryl alcohol and furoic acid via chemoenzymatic cascade catalysis.

Ni J, Di J, Ma C, He Y Bioresour Bioprocess. 2024; 8(1):113.

PMID: 38650293 PMC: 10991097. DOI: 10.1186/s40643-021-00466-3.


Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery.

Singh A, Deeba F, Kumar M, Kumari S, Wani S, Paul T Microb Cell Fact. 2023; 22(1):201.

PMID: 37803395 PMC: 10557352. DOI: 10.1186/s12934-023-02190-3.


Detoxification Approaches of Bagasse Pith Hydrolysate Affecting Xylitol Production by Rhodotorula mucilaginosa.

Garmaroody E, PahnehKolaei N, Ramezani O, Hamedi S Appl Biochem Biotechnol. 2023; 196(1):129-144.

PMID: 37103733 DOI: 10.1007/s12010-023-04539-1.


References
1.
Santana N, Dias J, Rezende R, Franco M, Oliveira L, Souza L . Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS One. 2018; 13(4):e0195206. PMC: 5895003. DOI: 10.1371/journal.pone.0195206. View

2.
Zhang G, Liu J, Kong I, Kwak S, Jin Y . Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol. 2015; 29:49-57. DOI: 10.1016/j.cbpa.2015.09.008. View

3.
Kim J, Ryu Y, Seo J . Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol. 2002; 29(1):16-9. DOI: 10.1038/sj.jim.7000257. View

4.
Misra S, Raghuwanshi S, Saxena R . Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydr Polym. 2013; 92(2):1596-601. DOI: 10.1016/j.carbpol.2012.11.033. View

5.
Wannawilai S, Lee W, Chisti Y, Sirisansaneeyakul S . Furfural and glucose can enhance conversion of xylose to xylitol by Candida magnoliae TISTR 5663. J Biotechnol. 2016; 241:147-157. DOI: 10.1016/j.jbiotec.2016.11.022. View