» Articles » PMID: 34578302

Substrate Specificity of SARS-CoV-2 Nsp10-Nsp16 Methyltransferase

Overview
Journal Viruses
Publisher MDPI
Specialty Microbiology
Date 2021 Sep 28
PMID 34578302
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The ongoing COVID-19 pandemic exemplifies the general need to better understand viral infections. The positive single-strand RNA genome of its causative agent, the SARS coronavirus 2 (SARS-CoV-2), encodes all viral enzymes. In this work, we focused on one particular methyltransferase (MTase), nsp16, which, in complex with nsp10, is capable of methylating the first nucleotide of a capped RNA strand at the 2'-O position. This process is part of a viral capping system and is crucial for viral evasion of the innate immune reaction. In light of recently discovered non-canonical RNA caps, we tested various dinucleoside polyphosphate-capped RNAs as substrates for nsp10-nsp16 MTase. We developed an LC-MS-based method and discovered four types of capped RNA (mGpA(G)- and GpA(G)-RNA) that are substrates of the nsp10-nsp16 MTase. Our technique is an alternative to the classical isotope labelling approach for the measurement of 2'-O-MTase activity. Further, we determined the IC value of sinefungin to illustrate the use of our approach for inhibitor screening. In the future, this approach may be an alternative technique to the radioactive labelling method for screening inhibitors of any type of 2'-O-MTase.

Citing Articles

Cannabinoid-Inspired Inhibitors of the SARS-CoV-2 Coronavirus 2'--Methyltransferase (2'--MTase) Non-Structural Protein (Nsp10-16).

Benjamin M, Hanna G, Dickinson C, Choo Y, Wang X, Downs-Bowen J Molecules. 2024; 29(21).

PMID: 39519722 PMC: 11547505. DOI: 10.3390/molecules29215081.


Natural evidence of coronaviral 2'-O-methyltransferase activity affecting viral pathogenesis via improved substrate RNA binding.

Deng J, Yang S, Li Y, Tan X, Liu J, Yu Y Signal Transduct Target Ther. 2024; 9(1):140.

PMID: 38811528 PMC: 11137015. DOI: 10.1038/s41392-024-01860-x.


Native Mass Spectrometry Dissects the Structural Dynamics of an Allosteric Heterodimer of SARS-CoV-2 Nonstructural Proteins.

Thibert S, Reid D, Wilson J, Varikoti R, Maltseva N, Schultz K J Am Soc Mass Spectrom. 2024; 35(5):912-921.

PMID: 38535992 PMC: 11066969. DOI: 10.1021/jasms.3c00453.


Classification, replication, and transcription of .

Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C Front Microbiol. 2024; 14:1291761.

PMID: 38328580 PMC: 10847374. DOI: 10.3389/fmicb.2023.1291761.


Discovery of a Druggable, Cryptic Pocket in SARS-CoV-2 nsp16 Using Allosteric Inhibitors.

Inniss N, Kozic J, Li F, Rosas-Lemus M, Minasov G, Rybacek J ACS Infect Dis. 2023; 9(10):1918-1931.

PMID: 37728236 PMC: 10961098. DOI: 10.1021/acsinfecdis.3c00203.


References
1.
Ksiazek T, Erdman D, Goldsmith C, Zaki S, Peret T, Emery S . A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003; 348(20):1953-66. DOI: 10.1056/NEJMoa030781. View

2.
Hudecek O, Benoni R, Reyes-Gutierrez P, Culka M, Sanderova H, Hubalek M . Dinucleoside polyphosphates act as 5'-RNA caps in bacteria. Nat Commun. 2020; 11(1):1052. PMC: 7044304. DOI: 10.1038/s41467-020-14896-8. View

3.
Konkolova E, Klima M, Nencka R, Boura E . Structural analysis of the putative SARS-CoV-2 primase complex. J Struct Biol. 2020; 211(2):107548. PMC: 7289108. DOI: 10.1016/j.jsb.2020.107548. View

4.
Chen Y, Kowtoniuk W, Agarwal I, Shen Y, Liu D . LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol. 2009; 5(12):879-81. PMC: 2842606. DOI: 10.1038/nchembio.235. View

5.
Diamond M . IFIT1: A dual sensor and effector molecule that detects non-2'-O methylated viral RNA and inhibits its translation. Cytokine Growth Factor Rev. 2014; 25(5):543-50. PMC: 4234691. DOI: 10.1016/j.cytogfr.2014.05.002. View