6.
Karray F, Ben Abdallah M, Kallel N, Hamza M, Fakhfakh M, Sayadi S
. Extracellular hydrolytic enzymes produced by halophilic bacteria and archaea isolated from hypersaline lake. Mol Biol Rep. 2018; 45(5):1297-1309.
DOI: 10.1007/s11033-018-4286-5.
View
7.
Efe D
. Potential Plant Growth-Promoting Bacteria with Heavy Metal Resistance. Curr Microbiol. 2020; 77(12):3861-3868.
DOI: 10.1007/s00284-020-02208-8.
View
8.
Nguyen T, Sesin V, Kisiala A, Emery R
. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environ Toxicol Chem. 2020; 40(1):7-22.
DOI: 10.1002/etc.4909.
View
9.
Morel M, Ubalde M, Brana V, Castro-Sowinski S
. Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch Microbiol. 2010; 193(1):63-8.
DOI: 10.1007/s00203-010-0632-2.
View
10.
Mashiguchi K, Hisano H, Takeda-Kamiya N, Takebayashi Y, Ariizumi T, Gao Y
. Agrobacterium tumefaciens Enhances Biosynthesis of Two Distinct Auxins in the Formation of Crown Galls. Plant Cell Physiol. 2018; 60(1):29-37.
PMC: 6343636.
DOI: 10.1093/pcp/pcy182.
View
11.
Ahmad E, Sharma S, Sharma P
. Deciphering operation of tryptophan-independent pathway in high indole-3-acetic acid (IAA) producing Micrococcus aloeverae DCB-20. FEMS Microbiol Lett. 2020; 367(24).
DOI: 10.1093/femsle/fnaa190.
View
12.
Vandana U, Rajkumari J, Singha L, Satish L, Alavilli H, Sudheer P
. The Endophytic Microbiome as a Hotspot of Synergistic Interactions, with Prospects of Plant Growth Promotion. Biology (Basel). 2021; 10(2).
PMC: 7912845.
DOI: 10.3390/biology10020101.
View
13.
Kumar P, Pahal V, Gupta A, Vadhan R, Chandra H, Dubey R
. Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays. Sci Rep. 2020; 10(1):20409.
PMC: 7683560.
DOI: 10.1038/s41598-020-77460-w.
View
14.
Gordon S, Weber R
. COLORIMETRIC ESTIMATION OF INDOLEACETIC ACID. Plant Physiol. 1951; 26(1):192-5.
PMC: 437633.
DOI: 10.1104/pp.26.1.192.
View
15.
Wozniak M, Galazka A, Tyskiewicz R, Jaroszuk-Scisel J
. Endophytic Bacteria Potentially Promote Plant Growth by Synthesizing Different Metabolites and their Phenotypic/Physiological Profiles in the Biolog GEN III MicroPlate Test. Int J Mol Sci. 2019; 20(21).
PMC: 6862297.
DOI: 10.3390/ijms20215283.
View
16.
Madsen E
. Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol. 2011; 22(3):456-64.
DOI: 10.1016/j.copbio.2011.01.008.
View
17.
Fatima T, Mishra I, Verma R, Arora N
. Mechanisms of halotolerant plant growth promoting sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress. 3 Biotech. 2020; 10(8):361.
PMC: 7392994.
DOI: 10.1007/s13205-020-02348-5.
View
18.
Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X
. The Effects of the Endophytic Bacterium Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Hance. Front Microbiol. 2018; 8:2538.
PMC: 5742199.
DOI: 10.3389/fmicb.2017.02538.
View
19.
Fan M, Liu Z, Nan L, Wang E, Chen W, Lin Y
. Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res. 2018; 217:51-59.
DOI: 10.1016/j.micres.2018.09.002.
View
20.
He X, Xu M, Wei Q, Tang M, Guan L, Lou L
. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicol Environ Saf. 2020; 205:111333.
DOI: 10.1016/j.ecoenv.2020.111333.
View