» Articles » PMID: 34567711

Sensitive Capacitive Pressure Sensors Based on Graphene Membrane Arrays

Abstract

The high flexibility, impermeability and strength of graphene membranes are key properties that can enable the next generation of nanomechanical sensors. However, for capacitive pressure sensors, the sensitivity offered by a single suspended graphene membrane is too small to compete with commercial sensors. Here, we realize highly sensitive capacitive pressure sensors consisting of arrays of nearly ten thousand small, freestanding double-layer graphene membranes. We fabricate large arrays of small-diameter membranes using a procedure that maintains the superior material and mechanical properties of graphene, even after high-temperature annealing. These sensors are readout using a low-cost battery-powered circuit board, with a responsivity of up to  aF Pa mm, thereby outperforming the commercial sensors.

Citing Articles

Piezoresistive Platinum Diselenide Pressure Sensors with Reliable High Sensitivity and Their Integration into Complementary Metal-Oxide-Semiconductor Circuits.

Lukas S, Rademacher N, Cruces S, Gross M, Desgue E, Heiserer S ACS Nano. 2025; 19(7):7026-7037.

PMID: 39936243 PMC: 11867020. DOI: 10.1021/acsnano.4c15098.


The Graphene Squeeze-Film Microphone.

Abrahams M, Martinez J, Steeneken P, Verbiest G Nano Lett. 2024; 24(45):14162-14167.

PMID: 39495529 PMC: 11566110. DOI: 10.1021/acs.nanolett.4c02803.


Graphene MEMS and NEMS.

Fan X, He C, Ding J, Gao Q, Ma H, Lemme M Microsyst Nanoeng. 2024; 10(1):154.

PMID: 39468030 PMC: 11519522. DOI: 10.1038/s41378-024-00791-5.


A piezoresistive-based 3-axial MEMS tactile sensor and integrated surgical forceps for gastrointestinal endoscopic minimally invasive surgery.

Hou C, Gao H, Yang X, Xue G, Zuo X, Li Y Microsyst Nanoeng. 2024; 10(1):141.

PMID: 39327456 PMC: 11427553. DOI: 10.1038/s41378-024-00774-6.


High-Yield Large-Scale Suspended Graphene Membranes over Closed Cavities for Sensor Applications.

Lukas S, Esteki A, Rademacher N, Jangra V, Gross M, Wang Z ACS Nano. 2024; 18(37):25614-25624.

PMID: 39244663 PMC: 11411726. DOI: 10.1021/acsnano.4c06827.


References
1.
Lee G, Cooper R, An S, Lee S, van der Zande A, Petrone N . High-strength chemical-vapor-deposited graphene and grain boundaries. Science. 2013; 340(6136):1073-6. DOI: 10.1126/science.1235126. View

2.
Sun P, Yang Q, Kuang W, Stebunov Y, Xiong W, Yu J . Limits on gas impermeability of graphene. Nature. 2020; 579(7798):229-232. DOI: 10.1038/s41586-020-2070-x. View

3.
Ponomarenko L, Yang R, Gorbachev R, Blake P, Mayorov A, Novoselov K . Density of states and zero Landau Level probed through capacitance of graphene. Phys Rev Lett. 2011; 105(13):136801. DOI: 10.1103/PhysRevLett.105.136801. View

4.
Chen Y, He S, Huang C, Huang C, Shih W, Chu C . Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors. Nanoscale. 2016; 8(6):3555-64. DOI: 10.1039/c5nr08668j. View

5.
Zurutuza A, Marinelli C . Challenges and opportunities in graphene commercialization. Nat Nanotechnol. 2014; 9(10):730-4. DOI: 10.1038/nnano.2014.225. View