» Articles » PMID: 34533605

Designing Libraries for Pooled CRISPR Functional Screens of Long Noncoding RNAs

Overview
Journal Mamm Genome
Specialty Genetics
Date 2021 Sep 17
PMID 34533605
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Human and other genomes encode tens of thousands of long noncoding RNAs (lncRNAs), the vast majority of which remain uncharacterised. High-throughput functional screening methods, notably those based on pooled CRISPR-Cas perturbations, promise to unlock the biological significance and biomedical potential of lncRNAs. Such screens are based on libraries of single guide RNAs (sgRNAs) whose design is critical for success. Few off-the-shelf libraries are presently available, and lncRNAs tend to have cell-type-specific expression profiles, meaning that library design remains in the hands of researchers. Here we introduce the topic of pooled CRISPR screens for lncRNAs and guide readers through the three key steps of library design: accurate annotation of transcript structures, curation of optimal candidate sets, and design of sgRNAs. This review is a starting point and reference for researchers seeking to design custom CRISPR screening libraries for lncRNAs.

Citing Articles

Revitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing.

S V S, Augustine D, Mushtaq S, Ali Baeshen H, Ashi H, Hassan R Front Oncol. 2024; 14:1383062.

PMID: 38915370 PMC: 11194394. DOI: 10.3389/fonc.2024.1383062.


Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk.

Ahmad M, Weiswald L, Poulain L, Denoyelle C, Meryet-Figuiere M J Exp Clin Cancer Res. 2023; 42(1):173.

PMID: 37464436 PMC: 10353155. DOI: 10.1186/s13046-023-02741-x.


Discovery and Validation of Clinically Relevant Long Non-Coding RNAs in Colorectal Cancer.

Snyder M, Iraola-Guzman S, Saus E, Gabaldon T Cancers (Basel). 2022; 14(16).

PMID: 36010859 PMC: 9405614. DOI: 10.3390/cancers14163866.

References
1.
Labuhn M, Adams F, Ng M, Knoess S, Schambach A, Charpentier E . Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res. 2017; 46(3):1375-1385. PMC: 5814880. DOI: 10.1093/nar/gkx1268. View

2.
Sundaram A, Tengs T, Grimholt U . Issues with RNA-seq analysis in non-model organisms: A salmonid example. Dev Comp Immunol. 2017; 75:38-47. DOI: 10.1016/j.dci.2017.02.006. View

3.
Kindgren P, Ard R, Ivanov M, Marquardt S . Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat Commun. 2018; 9(1):4561. PMC: 6212407. DOI: 10.1038/s41467-018-07010-6. View

4.
Vidigal J, Ventura A . Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nat Commun. 2015; 6:8083. PMC: 4544769. DOI: 10.1038/ncomms9083. View

5.
Kushawah G, Hernandez-Huertas L, Abugattas-Nunez Del Prado J, Martinez-Morales J, DeVore M, Hassan H . CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Dev Cell. 2020; 54(6):805-817.e7. DOI: 10.1016/j.devcel.2020.07.013. View