» Articles » PMID: 34528760

Modeling Glioblastoma Heterogeneity As a Dynamic Network of Cell States

Overview
Journal Mol Syst Biol
Specialty Molecular Biology
Date 2021 Sep 16
PMID 34528760
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition.

Citing Articles

Network analyses of brain tumor multiomic data reveal pharmacological opportunities to alter cell state transitions.

Bumbaca B, Huggins J, Birtwistle M, Gallo J NPJ Syst Biol Appl. 2025; 11(1):14.

PMID: 39893170 PMC: 11787326. DOI: 10.1038/s41540-025-00493-2.


Reconstructing the regulatory programs underlying the phenotypic plasticity of neural cancers.

Larsson I, Held F, Popova G, Koc A, Kundu S, Jornsten R Nat Commun. 2024; 15(1):9699.

PMID: 39516198 PMC: 11549355. DOI: 10.1038/s41467-024-53954-3.


Genetically-Encoded Fluorescence Barcodes for Single-Cell Analysis.

Lu X, Pritko D, Abravanel M, Huggins J, Ogunleye F, Biswas T bioRxiv. 2024; .

PMID: 39484616 PMC: 11526929. DOI: 10.1101/2024.10.23.619855.


Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks.

Uthamacumaran A Interdiscip Sci. 2024; 17(1):59-85.

PMID: 39420135 DOI: 10.1007/s12539-024-00657-4.


Glioblastoma and Immune Checkpoint Inhibitors: A Glance at Available Treatment Options and Future Directions.

Rodriguez S, Tataranu L, Kamel A, Turliuc S, Rizea R, Dricu A Int J Mol Sci. 2024; 25(19).

PMID: 39409094 PMC: 11477435. DOI: 10.3390/ijms251910765.


References
1.
Singh D, Kollipara R, Vemireddy V, Yang X, Sun Y, Regmi N . Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma. Cell Rep. 2017; 18(4):961-976. PMC: 5321610. DOI: 10.1016/j.celrep.2016.12.064. View

2.
Dirkse A, Golebiewska A, Buder T, Nazarov P, Muller A, Poovathingal S . Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun. 2019; 10(1):1787. PMC: 6467886. DOI: 10.1038/s41467-019-09853-z. View

3.
Foroutan M, Bhuva D, Lyu R, Horan K, Cursons J, Davis M . Single sample scoring of molecular phenotypes. BMC Bioinformatics. 2018; 19(1):404. PMC: 6219008. DOI: 10.1186/s12859-018-2435-4. View

4.
Gerlee P, Nelander S . The impact of phenotypic switching on glioblastoma growth and invasion. PLoS Comput Biol. 2012; 8(6):e1002556. PMC: 3375261. DOI: 10.1371/journal.pcbi.1002556. View

5.
Lan X, Jorg D, Cavalli F, Richards L, Nguyen L, Vanner R . Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017; 549(7671):227-232. PMC: 5608080. DOI: 10.1038/nature23666. View