6.
Bornemann S
. Flavoenzymes that catalyse reactions with no net redox change. Nat Prod Rep. 2003; 19(6):761-72.
DOI: 10.1039/b108916c.
View
7.
Sancar A
. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev. 2003; 103(6):2203-37.
DOI: 10.1021/cr0204348.
View
8.
Weber S
. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim Biophys Acta. 2005; 1707(1):1-23.
DOI: 10.1016/j.bbabio.2004.02.010.
View
9.
van der Horst M, Hellingwerf K
. Photoreceptor proteins, "star actors of modern times": a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res. 2004; 37(1):13-20.
DOI: 10.1021/ar020219d.
View
10.
Muller M, Carell T
. Structural biology of DNA photolyases and cryptochromes. Curr Opin Struct Biol. 2009; 19(3):277-85.
DOI: 10.1016/j.sbi.2009.05.003.
View
11.
Zhang M, Wang L, Zhong D
. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. Arch Biochem Biophys. 2017; 632:158-174.
PMC: 5650541.
DOI: 10.1016/j.abb.2017.08.007.
View
12.
Bouly J, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N
. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem. 2007; 282(13):9383-9391.
DOI: 10.1074/jbc.M609842200.
View
13.
Kay C, Schleicher E, Kuppig A, Hofner H, Rudiger W, Schleicher M
. Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin. J Biol Chem. 2003; 278(13):10973-82.
DOI: 10.1074/jbc.M205509200.
View
14.
Ghisla S, MASSEY V
. New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem J. 1986; 239(1):1-12.
PMC: 1147232.
DOI: 10.1042/bj2390001.
View
15.
Iorgu A, Cliff M, Waltho J, Scrutton N, Hay S
. Isotopically labeled flavoenzymes and their uses in probing reaction mechanisms. Methods Enzymol. 2019; 620:145-166.
DOI: 10.1016/bs.mie.2019.03.009.
View
16.
KAY C, Feicht R, Schulz K, Sadewater P, Sancar A, Bacher A
. EPR, ENDOR, and TRIPLE resonance spectroscopy on the neutral flavin radical in Escherichia coli DNA photolyase. Biochemistry. 1999; 38(51):16740-8.
DOI: 10.1021/bi991442u.
View
17.
Barquera B, Morgan J, Lukoyanov D, Scholes C, Gennis R, Nilges M
. X- and W-band EPR and Q-band ENDOR studies of the flavin radical in the Na+ -translocating NADH:quinone oxidoreductase from Vibrio cholerae. J Am Chem Soc. 2003; 125(1):265-75.
DOI: 10.1021/ja0207201.
View
18.
Brosi R, Illarionov B, Heidinger L, Kim R, Fischer M, Weber S
. Coupled Methyl Group Rotation in FMN Radicals Revealed by Selective Deuterium Labeling. J Phys Chem B. 2020; 124(9):1678-1690.
DOI: 10.1021/acs.jpcb.9b11331.
View
19.
Brosi R, Illarionov B, Mathes T, Fischer M, Joshi M, Bacher A
. Hindered rotation of a cofactor methyl group as a probe for protein-cofactor interaction. J Am Chem Soc. 2010; 132(26):8935-44.
DOI: 10.1021/ja910681z.
View
20.
Schleicher E, Wenzel R, Ahmad M, Batschauer A, Essen L, Hitomi K
. The Electronic State of Flavoproteins: Investigations with Proton Electron-Nuclear Double Resonance. Appl Magn Reson. 2015; 37(1-4):339-352.
PMC: 4469238.
DOI: 10.1007/s00723-009-0101-8.
View