» Articles » PMID: 34521348

Saline and Alkaline Stresses Alter Soil Properties and Composition and Structure of Gene-based Nitrifier and Denitrifier Communities in a Calcareous Desert Soil

Overview
Journal BMC Microbiol
Publisher Biomed Central
Specialty Microbiology
Date 2021 Sep 15
PMID 34521348
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Saline and alkaline stresses damages the health of soil systems. Meanwhile, little is known about how saline or alkaline stress affects soil nitrifier and denitrifier communities. Therefore, we compared the responses of gene-based nitrifier and denitrifier communities to chloride (CS), sulfate (SS), and alkaline (AS) stresses with those in a no-stress control (CK) in pots with a calcareous desert soil.

Results: Compared with CK, saline and alkaline stress decreased potential nitrification rate (PNR) and NO-N; increased pH, salinity, water content, and NH-N; and decreased copy numbers of amoA-AOA and amoA-AOB genes but increased those of denitrifier nirS and nosZ genes. Copies of nirK increased in SS and AS but decreased in CS. There were more copies of amoA-AOB than of amoA-AOA and of nirS than of nirK or nosZ. Compared with CK, SS and AS decreased operational taxonomic units (OTUs) of amoA-AOB but increased those of nirS and nosZ, whereas CS decreased nirK OTUs but increased those of nosZ. The numbers of OTUs and amoA-AOB genes were greater than those of amoA-AOA. There were positive linear relations between PNR and amoA-AOA and amoA-AOB copies. Compared with CK, the Chao 1 index of amoA-AOA and amoA-AOB decreased in AS, that of nirK increased in CS and SS, but that of nirS and nosZ increased in all treatments. The Shannon index of amoA-AOB decreased but that of nirS increased in CS and SS, whereas the index of nirK decreased in all treatments. Saline and alkaline stress greatly affected the structure of nitrifier and denitrifier communities and decreased potential biomarkers of nirS-type; however, AS increased those of nirK- and nosZ-type, and SS decreased those of nosZ-type. Soil water content, pH, and salinity were important in shaping amoA-AOA and denitrifier communities, whereas soil water and pH were important to amoA-AOB communities.

Conclusion: These results indicate that the nitrifier and denitrifier communities respond to saline and alkaline stresses conditions. Communities of amoA-AOA and amoA-AOB contribute to nitrification in alluvial gray desert soil, and those of nirS are more important in denitrification than those of nirK or nosZ.

Citing Articles

Effects of the synergistic treatments of arbuscular mycorrhizal fungi and trehalose on adaptability to salt stress in tomato seedlings.

Chen G, Yang A, Wang J, Ke L, Chen S, Li W Microbiol Spectr. 2024; 12(3):e0340423.

PMID: 38259091 PMC: 10913750. DOI: 10.1128/spectrum.03404-23.


The effect of alfalfa cultivation on improving physicochemical properties soil microorganisms community structure of grey desert soil.

Qi J, Fu D, Wang X, Zhang F, Ma C Sci Rep. 2023; 13(1):13747.

PMID: 37612457 PMC: 10447519. DOI: 10.1038/s41598-023-41005-8.


Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline-Alkaline Stress on Rice Seedlings.

Ma C, Li Q, Song Z, Su L, Tao W, Zhou B Int J Mol Sci. 2022; 23(17).

PMID: 36077438 PMC: 9456538. DOI: 10.3390/ijms231710048.


Irrigation water salinity structures the bacterial communities of date palm ()-associated bulk soil.

Loganathachetti D, Alhashmi F, Chandran S, Mundra S Front Plant Sci. 2022; 13:944637.

PMID: 35991423 PMC: 9388049. DOI: 10.3389/fpls.2022.944637.


Application of cotton straw biochar and compound Bacillus biofertilizer decrease the bioavailability of soil cd through impacting soil bacteria.

Zhu Y, Lv X, Song J, Li W, Wang H BMC Microbiol. 2022; 22(1):35.

PMID: 35081910 PMC: 8790908. DOI: 10.1186/s12866-022-02445-w.

References
1.
He J, Shen J, Zhang L, Zhu Y, Zheng Y, Xu M . Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol. 2007; 9(9):2364-74. DOI: 10.1111/j.1462-2920.2007.01358.x. View

2.
Mosier A, Francis C . Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol. 2008; 10(11):3002-16. DOI: 10.1111/j.1462-2920.2008.01764.x. View

3.
Jones C, Hallin S . Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J. 2010; 4(5):633-41. DOI: 10.1038/ismej.2009.152. View

4.
Zhao S, Wang Q, Zhou J, Yuan D, Zhu G . Linking abundance and community of microbial NO-producers and NO-reducers with enzymatic NO production potential in a riparian zone. Sci Total Environ. 2018; 642:1090-1099. DOI: 10.1016/j.scitotenv.2018.06.110. View

5.
Li J, Ye W, Wei D, Ngo H, Guo W, Qiao Y . System performance and microbial community succession in a partial nitrification biofilm reactor in response to salinity stress. Bioresour Technol. 2018; 270:512-518. DOI: 10.1016/j.biortech.2018.09.068. View