» Articles » PMID: 34511721

Chaotic Dynamics in a Novel COVID-19 Pandemic Model Described by Commensurate and Incommensurate Fractional-order Derivatives

Overview
Journal Nonlinear Dyn
Date 2021 Sep 13
PMID 34511721
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-021-06867-5.

Citing Articles

Generalized external synchronization of networks based on clustered pandemic systems-The approach of Covid-19 towards influenza.

Marwan M, Han M, Khan R PLoS One. 2023; 18(10):e0288796.

PMID: 37824553 PMC: 10569647. DOI: 10.1371/journal.pone.0288796.


Generation of multi-scrolls in corona virus disease 2019 (COVID-19) chaotic system and its impact on the zero-covid policy.

Marwan M, Han M, Khan R Sci Rep. 2023; 13(1):13954.

PMID: 37626140 PMC: 10457353. DOI: 10.1038/s41598-023-40651-2.


A fractional mathematical model with nonlinear partial differential equations for transmission dynamics of severe acute respiratory syndrome coronavirus 2 infection.

Thabet H, Kendre S Healthc Anal (N Y). 2023; 4:100209.

PMID: 37377904 PMC: 10288822. DOI: 10.1016/j.health.2023.100209.


Analysis of a Fractional-Order COVID-19 Epidemic Model with Lockdown.

Denu D, Kermausuor S Vaccines (Basel). 2022; 10(11).

PMID: 36366284 PMC: 9693277. DOI: 10.3390/vaccines10111773.


The impact of a power law-induced memory effect on the SARS-CoV-2 transmission.

Sk T, Biswas S, Sardar T Chaos Solitons Fractals. 2022; 165:112790.

PMID: 36312209 PMC: 9595307. DOI: 10.1016/j.chaos.2022.112790.


References
1.
Rajagopal K, Hasanzadeh N, Parastesh F, Hamarash I, Jafari S, Hussain I . A fractional-order model for the novel coronavirus (COVID-19) outbreak. Nonlinear Dyn. 2020; 101(1):711-718. PMC: 7314430. DOI: 10.1007/s11071-020-05757-6. View

2.
Xu C, Yu Y, Chen Y, Lu Z . Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model. Nonlinear Dyn. 2020; 101(3):1621-1634. PMC: 7487266. DOI: 10.1007/s11071-020-05946-3. View

3.
Yadav R, Verma R . A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China. Chaos Solitons Fractals. 2020; 140:110124. PMC: 7365131. DOI: 10.1016/j.chaos.2020.110124. View

4.
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J . Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11):1061-1069. PMC: 7042881. DOI: 10.1001/jama.2020.1585. View

5.
Wang W . Backward bifurcation of an epidemic model with treatment. Math Biosci. 2006; 201(1-2):58-71. DOI: 10.1016/j.mbs.2005.12.022. View