» Articles » PMID: 34504087

Sequences in the Cytoplasmic Tail of SARS-CoV-2 Spike Facilitate Expression at the Cell Surface and Syncytia Formation

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Sep 10
PMID 34504087
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

The Spike (S) protein of SARS-CoV-2 binds ACE2 to direct fusion with host cells. S comprises a large external domain, a transmembrane domain, and a short cytoplasmic tail. Understanding the intracellular trafficking of S is relevant to SARS-CoV-2 infection, and to vaccines expressing full-length S from mRNA or adenovirus vectors. Here we report a proteomic screen for cellular factors that interact with the cytoplasmic tail of S. We confirm interactions with the COPI and COPII vesicle coats, ERM family actin regulators, and the WIPI3 autophagy component. The COPII binding site promotes exit from the endoplasmic reticulum, and although binding to COPI should retain S in the early Golgi where viral budding occurs, there is a suboptimal histidine residue in the recognition motif. As a result, S leaks to the surface where it accumulates and can direct the formation of multinucleate syncytia. Thus, the trafficking signals in the tail of S indicate that syncytia play a role in the SARS-CoV-2 lifecycle.

Citing Articles

Production and cryo-electron microscopy structure of an internally tagged SARS-CoV-2 spike ecto-domain construct.

Singh S, Liu Y, Burke M, Rayaprolu V, Stein S, Hasan S J Struct Biol X. 2025; 11:100123.

PMID: 40046771 PMC: 11880631. DOI: 10.1016/j.yjsbx.2025.100123.


Sequences in the Cytoplasmic Tail Contribute to the Intracellular Trafficking and the Cell Surface Localization of SARS-CoV-2 Spike Protein.

Burkova E, Bakhno I Biomolecules. 2025; 15(2).

PMID: 40001583 PMC: 11853650. DOI: 10.3390/biom15020280.


The cytoplasmic tail of IBV spike mediates intracellular retention via interaction with COPI-coated vesicles in retrograde trafficking.

Liang R, Tian J, Liu K, Ma L, Yang R, Sun L J Virol. 2025; 99(2):e0216424.

PMID: 39840971 PMC: 11852926. DOI: 10.1128/jvi.02164-24.


SARS-CoV-2 Assembly: Gaining Infectivity and Beyond.

Katiyar H, Arduini A, Li Y, Liang C Viruses. 2024; 16(11).

PMID: 39599763 PMC: 11598957. DOI: 10.3390/v16111648.


Direct lipid interactions control SARS-CoV-2 M protein conformational dynamics and virus assembly.

Dutta M, Dolan K, Amiar S, Bass E, Sultana R, Voth G bioRxiv. 2024; .

PMID: 39574576 PMC: 11580925. DOI: 10.1101/2024.11.04.620124.


References
1.
Alsaadi E, Jones I . Membrane binding proteins of coronaviruses. Future Virol. 2020; 14(4):275-286. PMC: 7079996. DOI: 10.2217/fvl-2018-0144. View

2.
Ujike M, Taguchi F . Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses. 2015; 7(4):1700-25. PMC: 4411675. DOI: 10.3390/v7041700. View

3.
Li F . Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016; 3(1):237-261. PMC: 5457962. DOI: 10.1146/annurev-virology-110615-042301. View

4.
Neuman B, Buchmeier M . Supramolecular Architecture of the Coronavirus Particle. Adv Virus Res. 2016; 96:1-27. PMC: 7112365. DOI: 10.1016/bs.aivir.2016.08.005. View

5.
Cao Y, Yang R, Lee I, Zhang W, Sun J, Wang W . Characterization of the SARS-CoV-2 E Protein: Sequence, Structure, Viroporin, and Inhibitors. Protein Sci. 2021; 30(6):1114-1130. PMC: 8138525. DOI: 10.1002/pro.4075. View