» Articles » PMID: 34502125

Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2021 Sep 10
PMID 34502125
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.

Citing Articles

RCC1 depletion drives protein transport defects and rupture in micronuclei.

Zych M, Contreras M, Vashisth M, Mammel A, Ha G, Hatch E bioRxiv. 2024; .

PMID: 39282444 PMC: 11398501. DOI: 10.1101/2024.09.04.611299.


Inflammation is a critical factor for successful regeneration of the adult zebrafish retina in response to diffuse light lesion.

Bludau O, Weber A, Bosak V, Kuscha V, Dietrich K, Hans S Front Cell Dev Biol. 2024; 12:1332347.

PMID: 39071801 PMC: 11272569. DOI: 10.3389/fcell.2024.1332347.


Nuclear Pore Dysfunction in Neurodegeneration.

Spead O, Zaepfel B, Rothstein J Neurotherapeutics. 2022; 19(4):1050-1060.

PMID: 36070178 PMC: 9587172. DOI: 10.1007/s13311-022-01293-w.


C9orf72-Related Neurodegenerative Diseases: From Clinical Diagnosis to Therapeutic Strategies.

Zampatti S, Peconi C, Campopiano R, Gambardella S, Caltagirone C, Giardina E Front Aging Neurosci. 2022; 14:907122.

PMID: 35754952 PMC: 9226392. DOI: 10.3389/fnagi.2022.907122.


Cellular Stress Induces Nucleocytoplasmic Transport Deficits Independent of Stress Granules.

Vanneste J, Vercruysse T, Boeynaems S, Van Damme P, Daelemans D, Van Den Bosch L Biomedicines. 2022; 10(5).

PMID: 35625794 PMC: 9138870. DOI: 10.3390/biomedicines10051057.


References
1.
Kalderon D, Roberts B, Richardson W, Smith A . A short amino acid sequence able to specify nuclear location. Cell. 1984; 39(3 Pt 2):499-509. DOI: 10.1016/0092-8674(84)90457-4. View

2.
Baade I, Kehlenbach R . The cargo spectrum of nuclear transport receptors. Curr Opin Cell Biol. 2018; 58:1-7. DOI: 10.1016/j.ceb.2018.11.004. View

3.
Freibaum B, Lu Y, Lopez-Gonzalez R, Kim N, Almeida S, Lee K . GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature. 2015; 525(7567):129-33. PMC: 4631399. DOI: 10.1038/nature14974. View

4.
Cansizoglu A, Lee B, Zhang Z, Fontoura B, Chook Y . Structure-based design of a pathway-specific nuclear import inhibitor. Nat Struct Mol Biol. 2007; 14(5):452-4. PMC: 3437620. DOI: 10.1038/nsmb1229. View

5.
Tsuji L, Takumi T, Imamoto N, Yoneda Y . Identification of novel homologues of mouse importin alpha, the alpha subunit of the nuclear pore-targeting complex, and their tissue-specific expression. FEBS Lett. 1997; 416(1):30-4. DOI: 10.1016/s0014-5793(97)01092-2. View