» Articles » PMID: 34486778

Optogenetic Stimulation of VIPergic SCN Neurons Induces Photoperiodic-like Changes in the Mammalian Circadian Clock

Overview
Journal Eur J Neurosci
Specialty Neurology
Date 2021 Sep 6
PMID 34486778
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Circadian clocks play key roles in how organisms respond to and even anticipate seasonal change in day length, or photoperiod. In mammals, photoperiod is encoded by the central circadian pacemaker in the brain, the suprachiasmatic nucleus (SCN). The subpopulation of SCN neurons that secrete the neuropeptide VIP mediates the transmission of light information within the SCN neural network, suggesting a role for these neurons in circadian plasticity in response to light information that has yet to be directly tested. Here, we used in vivo optogenetic stimulation of VIPergic SCN neurons followed by ex vivo PERIOD 2::LUCIFERASE (PER2::LUC) bioluminescent imaging to test whether activation of this SCN neuron subpopulation can induce SCN network changes that are hallmarks of photoperiodic encoding. We found that optogenetic stimulation designed to mimic a long photoperiod indeed altered subsequent SCN entrained phase, increased the phase dispersal of PER2 rhythms within the SCN network, and shortened SCN free-running period-similar to the effects of a true extension of photoperiod. Optogenetic stimulation also induced analogous changes on related aspects of locomotor behaviour in vivo. Thus, selective activation of VIPergic SCN neurons induces photoperiodic network plasticity in the SCN that underpins photoperiodic entrainment of behaviour.

Citing Articles

Adaptation to photoperiod via dynamic neurotransmitter segregation.

Maddaloni G, Chang Y, Senft R, Dymecki S Nature. 2024; 632(8023):147-156.

PMID: 39020173 DOI: 10.1038/s41586-024-07692-7.


The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward.

Ono D, Weaver D, Hastings M, Honma K, Honma S, Silver R J Biol Rhythms. 2024; 39(2):135-165.

PMID: 38366616 PMC: 7615910. DOI: 10.1177/07487304231225706.


Seasonal variations of functional connectivity of human brains.

Xu L, Choi S, Zhao Y, Li M, Rogers B, Anderson A Sci Rep. 2023; 13(1):16898.

PMID: 37803105 PMC: 10558480. DOI: 10.1038/s41598-023-43152-4.


Pushing the Frontiers: Optogenetics for Illuminating the Neural Pathophysiology of Bipolar Disorder.

Kong L, Guo X, Shen Y, Xu L, Huang H, Lu J Int J Biol Sci. 2023; 19(14):4539-4551.

PMID: 37781027 PMC: 10535711. DOI: 10.7150/ijbs.84923.


A brain circuit and neuronal mechanism for decoding and adapting to change in daylength.

Maddaloni G, Chang Y, Senft R, Dymecki S bioRxiv. 2023; .

PMID: 37745319 PMC: 10515809. DOI: 10.1101/2023.09.11.557218.


References
1.
Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K . Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A. 2007; 104(18):7664-9. PMC: 1857228. DOI: 10.1073/pnas.0607713104. View

2.
Tackenberg M, Hughey J . The risks of using the chi-square periodogram to estimate the period of biological rhythms. PLoS Comput Biol. 2021; 17(1):e1008567. PMC: 7815206. DOI: 10.1371/journal.pcbi.1008567. View

3.
Green N, Jackson C, Iwamoto H, Tackenberg M, McMahon D . Photoperiod programs dorsal raphe serotonergic neurons and affective behaviors. Curr Biol. 2015; 25(10):1389-94. PMC: 4445239. DOI: 10.1016/j.cub.2015.03.050. View

4.
Tackenberg M, McMahon D . Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output. Neural Plast. 2018; 2018:8217345. PMC: 5818903. DOI: 10.1155/2018/8217345. View

5.
Lucassen E, van Diepen H, Houben T, Michel S, Colwell C, Meijer J . Role of vasoactive intestinal peptide in seasonal encoding by the suprachiasmatic nucleus clock. Eur J Neurosci. 2012; 35(9):1466-74. DOI: 10.1111/j.1460-9568.2012.08054.x. View