» Articles » PMID: 34485916

Fano-Resonant Hybrid Metamaterial for Enhanced Nonlinear Tunability and Hysteresis Behavior

Overview
Specialty Biology
Date 2021 Sep 6
PMID 34485916
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Artificial resonant metamaterial with subwavelength localized filed is promising for advanced nonlinear photonic applications. In this article, we demonstrate enhanced nonlinear frequency-agile response and hysteresis tunability in a Fano-resonant hybrid metamaterial. A ceramic cuboid is electromagnetically coupled with metal cut-wire structure to excite the high-Q Fano-resonant mode in the dielectric/metal hybrid metamaterial. It is found that the significant nonlinear response of the ceramic cuboid can be employed for realization of tunable metamaterials by exciting its magnetic mode, and the trapped mode with an asymmetric Fano-like resonance is beneficial to achieve notable nonlinear modulation on the scattering spectrum. The nonlinear tunability of both the ceramic structure and the ceramic/metal hybrid metamaterial is promising to extend the operation band of metamaterials, providing possibility in practical applications with enhanced light-matter interactions.

Citing Articles

Four-channel display and encryption by near-field reflection on nanoprinting metasurface.

Cao Y, Tang L, Li J, Lee C, Dong Z Nanophotonics. 2024; 11(14):3365-3374.

PMID: 39635556 PMC: 11501998. DOI: 10.1515/nanoph-2022-0216.


High-Efficiency Dynamic Terahertz Deflector Utilizing a Mechanically Tunable Metasurface.

Sun Z, Liang C, Chen C, Wang X, Zhou E, Bian X Research (Wash D C). 2024; 6:0274.

PMID: 38434248 PMC: 10907017. DOI: 10.34133/research.0274.


High-efficiency modulation of broadband polarization conversion with a reconfigurable chiral metasurface.

Wei Z, Zhao Y, Zhang Y, Cai W, Fan Y, Wang Z Nanoscale Adv. 2022; 4(20):4344-4350.

PMID: 36321137 PMC: 9552751. DOI: 10.1039/d2na00382a.


Giant Enhancement of Second-Harmonic Generation in Hybrid Metasurface Coupled MoS with Fano-Resonance Effect.

Xie Y, Yang L, Du J, Li Z Nanoscale Res Lett. 2022; 17(1):97.

PMID: 36194308 PMC: 9532486. DOI: 10.1186/s11671-022-03736-x.


Differential Refractive Index Sensor Based on Coupled Plasmon Waveguide Resonance in the C-Band.

Yang Q, Gao L, Zou C, Xie W, Tian C, Wang Z Sensors (Basel). 2021; 21(23).

PMID: 34883988 PMC: 8659539. DOI: 10.3390/s21237984.

References
1.
Singh R, Al-Naib I, Koch M, Zhang W . Sharp Fano resonances in THz metamaterials. Opt Express. 2011; 19(7):6312-9. DOI: 10.1364/OE.19.006312. View

2.
Cai W, Chettiar U, Kildishev A, Shalaev V . Designs for optical cloaking with high-order transformations. Opt Express. 2008; 16(8):5444-52. DOI: 10.1364/oe.16.005444. View

3.
Wu C, Khanikaev A, Adato R, Arju N, Yanik A, Altug H . Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater. 2011; 11(1):69-75. DOI: 10.1038/nmat3161. View

4.
Miroshnichenko A, Kivshar Y . Fano resonances in all-dielectric oligomers. Nano Lett. 2012; 12(12):6459-63. DOI: 10.1021/nl303927q. View

5.
Hao F, Sonnefraud Y, Van Dorpe P, Maier S, Halas N, Nordlander P . Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008; 8(11):3983-8. DOI: 10.1021/nl802509r. View