» Articles » PMID: 34475559

Epitaxial Growth of Wafer-scale Molybdenum Disulfide Semiconductor Single Crystals on Sapphire

Abstract

Two-dimensional (2D) semiconductors, in particular transition metal dichalcogenides (TMDCs), have attracted great interest in extending Moore's law beyond silicon. However, despite extensive efforts, the growth of wafer-scale TMDC single crystals on scalable and industry-compatible substrates has not been well demonstrated. Here we demonstrate the epitaxial growth of 2 inch (~50 mm) monolayer molybdenum disulfide (MoS) single crystals on a C-plane sapphire. We designed the miscut orientation towards the A axis (C/A) of sapphire, which is perpendicular to the standard substrates. Although the change of miscut orientation does not affect the epitaxial relationship, the resulting step edges break the degeneracy of nucleation energy for the antiparallel MoS domains and lead to more than a 99% unidirectional alignment. A set of microscopies, spectroscopies and electrical measurements consistently showed that the MoS is single crystalline and has an excellent wafer-scale uniformity. We fabricated field-effect transistors and obtained a mobility of 102.6 cm V s and a saturation current of 450 μA μm, which are among the highest for monolayer MoS. A statistical analysis of 160 field-effect transistors over a centimetre scale showed a >94% device yield and a 15% variation in mobility. We further demonstrated the single-crystalline MoSe on C/A sapphire. Our method offers a general and scalable route to produce TMDC single crystals towards future electronics.

Citing Articles

Temperature-Dependent Morphology Modulation of MoO from 1D Nanoribbons to 2D Nanoflakes for Enhanced Two-Dimensional Electrode Applications.

Wu D, Yi T, Hu Y, Xie J, Deng Y, He J Nanomaterials (Basel). 2025; 15(5).

PMID: 40072195 PMC: 11901888. DOI: 10.3390/nano15050392.


A non-layered two-dimensional semiconductor for p-type transistors.

Nat Mater. 2025; .

PMID: 40055540 DOI: 10.1038/s41563-025-02165-2.


Vapour-liquid-solid-solid growth of two-dimensional non-layered β-BiO crystals with high hole mobility.

Xiong Y, Xu D, Zou Y, Xu L, Yan Y, Wu J Nat Mater. 2025; .

PMID: 40055538 DOI: 10.1038/s41563-025-02141-w.


Polariton-Mediated Ultrafast Nonlinear Energy Transfer in a van der Waals Superlattice.

Peng T, Lynch J, Yang J, Wang Y, Lee X, Conran B ACS Nano. 2025; 19(8):8152-8161.

PMID: 39981960 PMC: 11887482. DOI: 10.1021/acsnano.4c16649.


Hypotaxy of wafer-scale single-crystal transition metal dichalcogenides.

Moon D, Lee W, Lim C, Kim J, Kim J, Jung Y Nature. 2025; 638(8052):957-964.

PMID: 39972146 DOI: 10.1038/s41586-024-08492-9.


References
1.
Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A . Electronics based on two-dimensional materials. Nat Nanotechnol. 2014; 9(10):768-79. DOI: 10.1038/nnano.2014.207. View

2.
Akinwande D, Huyghebaert C, Wang C, Serna M, Goossens S, Li L . Graphene and two-dimensional materials for silicon technology. Nature. 2019; 573(7775):507-518. DOI: 10.1038/s41586-019-1573-9. View

3.
Liu K, Zhang W, Lee Y, Lin Y, Chang M, Su C . Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012; 12(3):1538-44. DOI: 10.1021/nl2043612. View

4.
Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S . Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater. 2013; 12(8):754-9. DOI: 10.1038/nmat3673. View

5.
van der Zande A, Huang P, Chenet D, Berkelbach T, You Y, Lee G . Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater. 2013; 12(6):554-61. DOI: 10.1038/nmat3633. View