» Articles » PMID: 34472169

Cryptic Genetic Structure and Copy-number Variation in the Ubiquitous Forest Symbiotic Fungus Cenococcum Geophilum

Overview
Date 2021 Sep 2
PMID 34472169
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Ectomycorrhizal (ECM) fungi associated with plants constitute one of the most successful symbiotic interactions in forest ecosystems. ECM support trophic exchanges with host plants and are important factors for the survival and stress resilience of trees. However, ECM clades often harbour morpho-species and cryptic lineages, with weak morphological differentiation. How this relates to intraspecific genome variability and ecological functioning is poorly known. Here, we analysed 16 European isolates of the ascomycete Cenococcum geophilum, an extremely ubiquitous forest symbiotic fungus with no known sexual or asexual spore-forming structures but with a massively enlarged genome. We carried out whole-genome sequencing to identify single-nucleotide polymorphisms. We found no geographic structure at the European scale but divergent lineages within sampling sites. Evidence for recombination was restricted to specific cryptic lineages. Lineage differentiation was supported by extensive copy-number variation. Finally, we confirmed heterothallism with a single MAT1 idiomorph per genome. Synteny analyses of the MAT1 locus revealed substantial rearrangements and a pseudogene of the opposite MAT1 idiomorph. Our study provides the first evidence for substantial genome-wide structural variation, lineage-specific recombination and low continent-wide genetic differentiation in C. geophilum. Our study provides a foundation for targeted analyses of intra-specific functional variation in this major symbiosis.

Citing Articles

Biology, genetics, and ecology of the cosmopolitan ectomycorrhizal ascomycete .

Wang H, Kohler A, Martin F Front Microbiol. 2025; 16:1502977.

PMID: 39916863 PMC: 11799279. DOI: 10.3389/fmicb.2025.1502977.


Analysis of the distribution pattern of the ectomycorrhizal fungus under climate change using the optimized MaxEnt model.

Zheng Y, Yuan C, Matsushita N, Lian C, Geng Q Ecol Evol. 2023; 13(9):e10565.

PMID: 37753310 PMC: 10518754. DOI: 10.1002/ece3.10565.


Loss of the accessory chromosome converts a pathogenic tree-root fungus into a mutualistic endophyte.

Wei H, Zhong Z, Li Z, Zhang Y, Stukenbrock E, Tang B Plant Commun. 2023; 5(1):100672.

PMID: 37563834 PMC: 10811371. DOI: 10.1016/j.xplc.2023.100672.


Comparative Physiological and Transcriptome Analysis Provide Insights into the Response of , an Ectomycorrhizal Fungus to Cadmium Stress.

Shi Y, Yan T, Yuan C, Li C, Rensing C, Chen Y J Fungi (Basel). 2022; 8(7).

PMID: 35887479 PMC: 9323960. DOI: 10.3390/jof8070724.

References
1.
Chen E, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S . High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 2018; 220(4):1161-1171. DOI: 10.1111/nph.14989. View

2.
Cantarel B, Coutinho P, Rancurel C, Bernard T, Lombard V, Henrissat B . The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2008; 37(Database issue):D233-8. PMC: 2686590. DOI: 10.1093/nar/gkn663. View

3.
Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett D . Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol. 2016; 14(12):760-773. DOI: 10.1038/nrmicro.2016.149. View

4.
Douhan G, Rizzo D . Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol. 2005; 166(1):263-71. DOI: 10.1111/j.1469-8137.2004.01305.x. View

5.
Bruen T, Philippe H, Bryant D . A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006; 172(4):2665-81. PMC: 1456386. DOI: 10.1534/genetics.105.048975. View