» Articles » PMID: 34469685

Spin-Pure Stochastic-CASSCF Via GUGA-FCIQMC Applied to Iron-Sulfur Clusters

Overview
Specialties Biochemistry
Chemistry
Date 2021 Sep 1
PMID 34469685
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

In this work, we demonstrate how to efficiently compute the one- and two-body reduced density matrices within the full configuration interaction quantum Monte Carlo (FCIQMC) method, which is based on the graphical unitary group approach (GUGA). This allows us to use GUGA-FCIQMC as a spin-pure configuration interaction (CI) eigensolver within the complete active space self-consistent field (CASSCF) procedure and hence to stochastically treat active spaces far larger than conventional CI solvers while variationally relaxing orbitals for specific spin-pure states. We apply the method to investigate the spin ladder in iron-sulfur dimer and tetramer model systems. We demonstrate the importance of the orbital relaxation by comparing the Heisenberg model magnetic coupling parameters from the CASSCF procedure to those from a CI-only (CASCI) procedure based on restricted open-shell Hartree-Fock orbitals. We show that the orbital relaxation differentially stabilizes the lower-spin states, thus enlarging the coupling parameters with respect to the values predicted by ignoring orbital relaxation effects. Moreover, we find that, while CASCI results are well fit by a simple bilinear Heisenberg Hamiltonian, the CASSCF eigenvalues exhibit deviations that necessitate the inclusion of biquadratic terms in the model Hamiltonian.

Citing Articles

Effective Hamiltonians from Spin-Adapted Configuration Interaction.

Safari A, Bogdanov N J Chem Theory Comput. 2025; 21(2):539-548.

PMID: 39778153 PMC: 11780745. DOI: 10.1021/acs.jctc.4c01380.


Restricted Open-Shell Hartree-Fock Method for a General Configuration State Function Featuring Arbitrarily Complex Spin-Couplings.

Leyser da Costa Gouveia T, Maganas D, Neese F J Phys Chem A. 2024; 128(25):5041-5053.

PMID: 38886177 PMC: 11215774. DOI: 10.1021/acs.jpca.4c00688.


Toward Real Chemical Accuracy on Current Quantum Hardware Through the Transcorrelated Method.

Dobrautz W, Sokolov I, Liao K, Lopez Rios P, Rahm M, Alavi A J Chem Theory Comput. 2024; 20(10):4146-4160.

PMID: 38723159 PMC: 11137825. DOI: 10.1021/acs.jctc.4c00070.


Distributed Implementation of Full Configuration Interaction for One Trillion Determinants.

Gao H, Imamura S, Kasagi A, Yoshida E J Chem Theory Comput. 2024; 20(3):1185-1192.

PMID: 38314701 PMC: 10867839. DOI: 10.1021/acs.jctc.3c01190.


Toward a Stochastic Complete Active Space Second-Order Perturbation Theory.

Safari A, Anderson R, Li Manni G J Phys Chem A. 2023; 128(1):281-291.

PMID: 38154124 PMC: 10788896. DOI: 10.1021/acs.jpca.3c05109.


References
1.
Munoz D, de Graaf C, Illas F . Putting error bars on the ab initio theoretical estimates of the magnetic coupling constants: the parent compounds of superconducting cuprates as a case study. J Comput Chem. 2004; 25(10):1234-41. DOI: 10.1002/jcc.20052. View

2.
Li Manni G, Smart S, Alavi A . Combining the Complete Active Space Self-Consistent Field Method and the Full Configuration Interaction Quantum Monte Carlo within a Super-CI Framework, with Application to Challenging Metal-Porphyrins. J Chem Theory Comput. 2016; 12(3):1245-58. DOI: 10.1021/acs.jctc.5b01190. View

3.
Li Manni G, Ma D, Aquilante F, Olsen J, Gagliardi L . SplitGAS Method for Strong Correlation and the Challenging Case of Cr2. J Chem Theory Comput. 2015; 9(8):3375-84. DOI: 10.1021/ct400046n. View

4.
Brabec J, Brandejs J, Kowalski K, Xantheas S, Legeza O, Veis L . Massively parallel quantum chemical density matrix renormalization group method. J Comput Chem. 2020; 42(8):534-544. DOI: 10.1002/jcc.26476. View

5.
Ma D, Li Manni G, Gagliardi L . The generalized active space concept in multiconfigurational self-consistent field methods. J Chem Phys. 2011; 135(4):044128. DOI: 10.1063/1.3611401. View