» Articles » PMID: 34467273

Multiprincipal Component P2-Na(TiMnCoNiRu)O As a High-Rate Cathode for Sodium-Ion Batteries

Overview
Journal JACS Au
Specialty Chemistry
Date 2021 Sep 1
PMID 34467273
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Mixing transition metal cations in nearly equiatomic proportions in layered oxide cathode materials is a new strategy for improving the performances of Na-ion batteries. The mixing of cations not only offers entropic stabilization of the crystal structure but also benefits the diffusion of Na ions with tuned diffusion activation energy barriers. In light of this strategy, a high-rate Na(TiMnCoNiRu)O cathode was designed, synthesized, and investigated, combining graph-based deep learning calculations and complementary experimental characterizations. This new cathode material delivers high discharge capacities of 164 mA g at 0.1 C and 68 mAh g at a very high rate of 86 C, demonstrating an outstanding high rate capability. and synchrotron X-ray diffraction were used to reveal the detailed structural evolution of the cathode upon cycling. Using the climbing-image nudged elastic-band calculation and Ab initio molecular dynamics simulations, we show that the optimal transition metal composition enables a percolating network of low barrier pathways for fast, macroscopic Na diffusion, resulting in the observed high rate performance.

Citing Articles

Recent progress in high-voltage P2-Na TMO materials and their future perspectives.

Li M, Lin W, Ji Y, Guan L, Qiu L, Chen Y RSC Adv. 2024; 14(34):24797-24814.

PMID: 39119284 PMC: 11306967. DOI: 10.1039/d4ra04790g.


Single-Crystal P2-NaMnNiO Cathode Material with Improved Cycling Stability for Sodium-Ion Batteries.

Pamidi V, Naranjo C, Fuchs S, Stein H, Diemant T, Li Y ACS Appl Mater Interfaces. 2024; 16(20):25953-25965.

PMID: 38716923 PMC: 11129112. DOI: 10.1021/acsami.3c15348.


High-Entropy Oxides for Rechargeable Batteries.

Ran B, Li H, Cheng R, Yang Z, Zhong Y, Qin Y Adv Sci (Weinh). 2024; 11(25):e2401034.

PMID: 38647393 PMC: 11220673. DOI: 10.1002/advs.202401034.


Micron-sized single-crystal cathodes for sodium-ion batteries.

Pamidi V, Trivedi S, Behara S, Fichtner M, Anji Reddy M iScience. 2022; 25(5):104205.

PMID: 35494248 PMC: 9043968. DOI: 10.1016/j.isci.2022.104205.

References
1.
Mortemard de Boisse B, Carlier D, Guignard M, Bourgeois L, Delmas C . P2-Na(x)Mn(1/2)Fe(1/2)O2 phase used as positive electrode in Na batteries: structural changes induced by the electrochemical (de)intercalation process. Inorg Chem. 2014; 53(20):11197-205. DOI: 10.1021/ic5017802. View

2.
Li X, Ma X, Su D, Liu L, Chisnell R, Ong S . Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. Nat Mater. 2014; 13(6):586-92. DOI: 10.1038/nmat3964. View

3.
Kang W, Yu D, Lee P, Zhang Z, Bian H, Li W . P2-Type NaCuNiMnO Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries. ACS Appl Mater Interfaces. 2016; 8(46):31661-31668. DOI: 10.1021/acsami.6b10841. View

4.
Yan P, Zheng J, Tang Z, Devaraj A, Chen G, Amine K . Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat Nanotechnol. 2019; 14(6):602-608. DOI: 10.1038/s41565-019-0428-8. View

5.
Wang P, Yao H, Liu X, Yin Y, Zhang J, Wen Y . Na/vacancy disordering promises high-rate Na-ion batteries. Sci Adv. 2018; 4(3):eaar6018. PMC: 5844706. DOI: 10.1126/sciadv.aar6018. View