» Articles » PMID: 34458810

Chemogenomics for Drug Discovery: Clinical Molecules from Open Access Chemical Probes

Overview
Journal RSC Chem Biol
Specialty Biology
Date 2021 Aug 30
PMID 34458810
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.

Citing Articles

SETDB1 as a cancer target: challenges and perspectives in drug design.

Hassanie H, Penteado A, de Almeida L, Calil R, da Silva Emery F, Costa-Lotufo L RSC Med Chem. 2024; 15(5):1424-1451.

PMID: 38799223 PMC: 11113007. DOI: 10.1039/d3md00366c.


Editorial: Computational chemogenomics: In silico tools in pharmacological research and drug discovery.

Sanchez-Cruz N, Fernandez-de Gortari E, Medina-Franco J Front Pharmacol. 2023; 14:1150869.

PMID: 37007046 PMC: 10064217. DOI: 10.3389/fphar.2023.1150869.


A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery.

Maghsoudi S, Taghavi Shahraki B, Rameh F, Nazarabi M, Fatahi Y, Akhavan O Chem Biol Drug Des. 2022; 100(5):699-721.

PMID: 36002440 PMC: 9539342. DOI: 10.1111/cbdd.14136.


Target 2035 - update on the quest for a probe for every protein.

Muller S, Ackloo S, Al Chawaf A, Al-Lazikani B, Antolin A, Baell J RSC Med Chem. 2022; 13(1):13-21.

PMID: 35211674 PMC: 8792830. DOI: 10.1039/d1md00228g.


Advances in the Exploration of the Epigenetic Relevant Chemical Space.

Prado-Romero D, Medina-Franco J ACS Omega. 2021; 6(35):22478-22486.

PMID: 34514220 PMC: 8427648. DOI: 10.1021/acsomega.1c03389.

References
1.
Nayak S, Panesar P, Kumar H . p53-Induced apoptosis and inhibitors of p53. Curr Med Chem. 2009; 16(21):2627-40. DOI: 10.2174/092986709788681976. View

2.
Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand . Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell. 2004; 13(2):251-63. DOI: 10.1016/s1097-2765(03)00528-8. View

3.
Huang J, Dorsey J, Chuikov S, Zhang X, Jenuwein T, Reinberg D . G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem. 2010; 285(13):9636-9641. PMC: 2843213. DOI: 10.1074/jbc.M109.062588. View

4.
Genin M, Bueno A, Agejas Francisco J, Manninen P, Bocchinfuso W, Montrose-Rafizadeh C . Discovery of 6-(4-{[5-Cyclopropyl-3-(2,6-dichlorophenyl)isoxazol-4-yl]methoxy}piperidin-1-yl)-1-methyl-1H-indole-3-carboxylic Acid: A Novel FXR Agonist for the Treatment of Dyslipidemia. J Med Chem. 2015; 58(24):9768-72. DOI: 10.1021/acs.jmedchem.5b01161. View

5.
Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield V . hDOT1L links histone methylation to leukemogenesis. Cell. 2005; 121(2):167-78. DOI: 10.1016/j.cell.2005.02.020. View