» Articles » PMID: 34456086

Acoustic Droplet Vaporization of Perfluorocarbon Droplets in 3D-Printable Gelatin Methacrylate Scaffolds

Overview
Specialty Radiology
Date 2021 Aug 30
PMID 34456086
Authors
Affiliations
Soon will be listed here.
Abstract

Scientists face a significant challenge in creating effective biomimetic constructs in tissue engineering with sustained and controlled delivery of growth factors. Recently, the addition of phase-shift droplets inside the scaffolds is being explored for temporal and spatial control of biologic delivery through vaporization using external ultrasound stimulation. Here, we explore acoustic droplet vaporization (ADV) in gelatin methacrylate (GelMA), a popular hydrogel used for tissue engineering applications because of its biocompatibility, tunable mechanical properties and rapid reproducibility. We embedded phase-shift perfluorocarbon droplets within the GelMA resin before crosslinking and characterized ADV and inertial cavitation (IC) thresholds of the embedded droplets. We were successful in vaporizing two different perfluorocarbon---perfluoropentane (PFP) and perfluorohexane (PFH)--cores at 2.25- and 5-MHz frequencies and inside hydrogels with varying mechanical properties. The ADV and IC thresholds for PFP droplets in GelMA scaffolds increased with frequency and in stiffer scaffolds. The PFH droplets exhibited ADV and IC activity only at 5 MHz for the range of excitations below 3MPa investigated here and at threshold values higher than those of PFP droplets. The results provide a proof of concept for the possible use of ADV in hydrogel scaffolds for tissue engineering.